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INTRODUCTION

Traffic problems, congestion for example, have been widely researched. Drivers behave selfishly
so that they choose paths to minimize their own travel time to the destinations. When traffic
demands of origin-destinations per unit time are constant, there is a path choice equilibrium where
no drivers can decrease their own travel time to the destinations by changing their path choices.
This equilibrium is called the user equilibrium (UE) [1]. The stability of UE is shown in [2] under
some conditions. However, at UE, the traffic network is not used efficiently, and there can be
paradoxical phenomenon called Braess paradox [3] in which removing a road decreases the total
travel time of drivers.

To resolve the inefficient use of traffic network, some taxation approaches have been proposed
to control the traffic distribution over paths. Notable examples are [4–7]. Among such taxation
approaches, there is another approach which controls the demands, instead of the traffic distribution
in a constant demand. Reference [8] proposes a control method of demands and explains the benefits
of demand control. In addition, an interesting case is shown in [9] in which an increase of traffic on
a road can decrease the drivers’ total travel time. Reference [10] studies the relation for a simple
network between demand and Braess paradox and they say Braess paradox disappears when the
demand is large enough. However, the demands do not increase automatically because human do
not want to use the network when it is congested. When the dynamic demands are considered,
how will the properties of converging points be from the viewpoints of drivers’ travel time and the
existence of inefficient use of network? Dynamic demands are closely related to departure time
choices of drivers. Reference [11, 12] study the stability of departure time choices on a road, but
they do not address the case shown in [9]. Monetary incentives are oftern considered for demands
control [8]. Hence, to increase demands, the road managers may have to give drivers positive
monetary incentives (eg. discount of tolls), however, there can be their budget constraints. In
addition, controlling not all origin-destination pairs’ demands may be beneficial, for exmaple, from
the viewpoint of cost to implement the control.

RESEARCH OBJECTIVES

In this research, using a dynamic traffic demand model which is refered to as the selfish hu-
man’s decision model, we provide analysis of converging points and their properties in a similar
phenomenon to the one shown in [9]. The properties are stability, price of anarchy (PoA). PoA is
a measure of how efficiently the traffic network is used [5, 13]. In some cases we should control the
demands to converge to an efficient ones, and from the motivations of the input constraints such as
budeget constraints, we analyze reachability of the efficient demands with input constraints.

TRAFFIC NETWORK

We model the traffic routing as non-atomic game, where the players are regarded as infinitely
small. In this research we consider the directed network shown in Fig. 1. We call the pair of
origin-c and destination-c as a commodity c ∈ {1, 2}, and the non-negative traffic demand per unit
time from origin-c to destination-c is denoted by dc. Hence, in this network, multiple drivers are
going from their origins to their destinations. The flow amount on an edge e ∈ E is denoted by fe
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Figure 1: Network graph

Figure 2: Visualization of regions

where E =: {1, . . . , 7} denotes the edge set. The function le(fe) denotes the delay function on edge
e which maps fe to the travel time le to pass the edge. Delay functions are defined as

le(fe) =

{
fe, e = 1, 3, 5, 7, (1)

1, e = 2, 4, 6. (2)

In this research, we assume that When (d1, d2) is given, path flow amount distribution over
paths is always at UE.

Expressions of average delay and PoA
ADc(d1, d2) is the average delay (average travel time from the origin to the desination) of com-

modity c. We can derive ADc(d1, d2) at UE as function of d1, d2 by solving a convex optimization
problem [1]. The expressions of AD1(d1, d2),AD2(d1, d2) are different over following 6 regions.

The expressions of AD1(d1, d2),AD2(d1, d2) on D5 is

D5 :


AD1(d1, d2) = 1.5− d2 − d1

4
, (3)

AD2(d1, d2) = 1.5− d1 − d2
4

. (4)

Interestingly, for example, on d2 = d1(
1
2 ≤ d1 ≤ 1), the increase of d1, d2 do not change the average

delays.
Next, we analyze PoA(d1, d2). Total average delay TAD(d1, d2) denotes average delay of all

drivers including both commodities at UE. TADmin(d1, d2) denotes TAD at minimum delay flow (a
path flow distribution which minimizes TAD(d1, d2) when (d1, d2) is fixed.) PoA(d1, d2) is defined
as

PoA(d1, d2) :=
TAD(d1, d2)

TADmin (d1, d2)
(≥ 1). (5)

Network use is more efficient when PoA is smaller. Fig. 3 shows PoA plot. On , PoA is strictly
monotonically decreasing. At (d1, d2) = (1, 1), PoA is 1.
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Figure 3: PoA plot

(a) (d1, d2) = ( 1
2
, 1
2
) (b) (d1, d2) = (1, 1)

Figure 4: Path flow amount distributions at UE. AD1 = AD2 = 1.5 in both cases

Fig. 4 shows path flow amount distributions at UE when (d1, d2) = (12 ,
1
2) and (d1, d2) = (1, 1).

Fig. 4(a) shows an example of the distribution when (d1, d2) = (12 ,
1
2).

Stability and converging points of dynamic demands
Next, we consider following dynamic traffic demand model.

ḋ1(t) = s1 {1.5−AD1(d(t))} , (6)

ḋ2(t) = s2 {1.5−AD2(d(t))} . (7)

where s1, s2 are positive constants representing the changing speed of each demand. The dynamics
represent the human selfish departure time choice. That is, when the average delays are large, less
drivers want to make trips than the case when the average delays are small. We proved that on
this dynamics, the set of equilibrium points (equilibrium set, ES) is given by d2 = d1(

1
2 ≤ d1 ≤

1). Furthermore, every point in ES is Lyapunov stable. I derived all converging points for all
(d1, d2), s1, s2. Then we proved that for any (d1, d2), s1, s2, the trajectory converges to a point on
the ES. Fig. 5 shows exmaple trajectories to converging points.

Figure 5: Example trajectories from (d1, d2) = (0.25, 1.5). Each trajectory is with different (s1, s2).
Red line is ES.
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Reachability analysis with controll input constraints

On the ES, AD1(d1, d2) and AD2(d1, d2) do not change and at (d1, d2) = (1, 1), the most drivers
can use the network. From the motivation we mention in introduction, we analyze reachability to
(d1, d2) = (1, 1) with input constraints. I proved that if we control only one of the two demands,
(d1, d2) = (1, 1) is reachable with any (d1, d2), s1, s2.

Next, we consider zero-sum input controller described as

d

dt

[
d1(t)
d2(t)

]
=

[
s1 {1.5−AD1 (d1(t), d2(t))}
s2 {1.5−AD2 (d1(t), d2(t))}

]
+

[
1
−1

]
u(t), u(t) ∈ R. (8)

u(t) denotes monetary value. I proved that if s1 ̸= s2, (1,1) is reachable from any (d1(0), d2(0)).
If s1 = s2, (1,1) is reachable from (d1(0), d2(0)) {(d1, d2)|d1 + d2 ≤ 2}. However, if s1 = s2 and
d1(0) + d2(0) ≥ 2, the trajectory converges to (d1(0), d2(0)) = (1, 1) in infinite time. Interestingly,
if s1 = s2 and d1(0) + d2(0) < 2, the trajectory has to pass (2,0) or (0,2) to reach (1,1).

Conclusion

We analyzed the converging points and stability of equilibrium points of dynamic traffic de-
mands model which is refered to as human selfish departure time choice behavior. Our results
show that there is the case in which the demands converge to efficient demands, but in some case
not. It is because the equilibrium point is not unique on our dynamics, and it is caused by para-
doxical phenomenon in which average delays do not change although the demands increase. Such
phenomena is caused by human’s selfish path choice. Finally we analyzed the reachability to the
efficient demands with simple control input constraints. When we use the zero-sum controller and if
s1 = s2, in some cases the trajectory has to go to (d1, d2) = (2, 0) or (0, 2) to reach (d1, d2) = (1, 1).
Hence at this time the demand of a commodity must be 0. If the drivers of the commodity are
unhappy, then we should control the trajectory considering the happiness of road managers and
drivers. This can be our next research topic. For other future works, we will extend the network to
more complicated one, and the delay functions each road to nonlinear ones. In addition, when we
control the demands, considering scale of monetary incentives and convergence speed to the length
of the time period is another direction of our research.
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