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Abstract

A novel neural network approximation scheme
that is especially appropriate for adaptive control of
nonlinear dynamical systems is proposed. In light of
the new function approximation characterization, a
neuro adaptive control framework for continuous- and
discrete-time nonlinear uncertain dynamical systems
is also presented. Specifically, the proposed neural
network control framework is Lyapunov-based and,
unlike standard neural network controllers guarantee-
ing ultimate boundedness, the framework guarantees
partial asymptotic stability of the closed-loop system,
that is, asymptotic stability with respect to part of
the closed-loop system states associated with the
system plant dynamics. The neuro adaptive controllers
are constructed without requiring explicit knowledge
of the system dynamics other than the assumption
that the plant dynamics are continuous and piecewise
continuously differentiable, and that the approximation
error of uncertain system nonlinearities lie in a small
gain-type norm bounded conic sector. This allows us to
show that the standard neural network controllers are
in fact capable of achieving partial asymptotic stability
around the system equilibrium point for continuous-
and discrete-time uncertain systems.

1. Introduction

There has been a tremendous amount of effort to de-
velop adaptive control framework using neural networks
(see, for example, [1–3] for continuous-time cases and
[4–6] for discrete-time cases, to cite but a few) ever
since it was shown that the neural network is a uni-
versal approximator [7, 8]. One of the key ideas behind
the neuro adaptive control is to cancel uncertain nonlin-
ear elements in the plant dynamics via neural networks
online and generate an additional control signal based
on the known part of the system dynamics.

In approximating general nonlinear functions via fi-
nite linear combination of activation functions, it is in-
evitable that there remains residual approximation er-
ror between the actual and the approximated nonlin-
ear functions. The approximation error is convention-
ally evaluated in the sense of infinity norm, that is, the
worst approximation error over the domain of interest.
In the field of neural network control, this fact naturally
forces us to construct a positive-definite (Lyapunov-like)
function for a given dynamical system and to show that
the Lyapunov derivative along the closed-loop system

trajectories is negative outside an open set that con-
tains the targeted system equilibrium point. As a conse-
quence, this uncertainty characterization yields ultimate
boundedness [9,10] of the closed-loop system, instead of
stability.

To claim ultimate boundedness (even for noiseless sys-
tems), it is necessary to add to weight update laws
‘damping terms’ such as σ- or e-modification terms
which prevent the neural network weighting gains from
blowing up. One can easily surmise that these additional
terms make the computation of Lyapunov derivatives
complicated (especially for discrete-time systems) and
induce conservativeness. On top of that, that is not to
say that the Lyapunov methods provide only sufficient
conditions for judging stability of nonlinear systems.

In recent papers [11, 12], a novel characterization for
approximating nonlinear functions was proposed. The
approach was distinct from the ones in the conventional
neural network literature in that the nonlinear func-
tion was transformed into the form of a linear function
with a state-dependent coefficient matrix, and the co-
efficient matrix was then approximated via neural net-
works. Consequently, the approximation error was as-
sessed in the sense of Lipschitz norm, that is, the size of
the small gain-type conic sector. This uncertainty char-
acterization certainly allows us to achieve asymptotic
stability with respect to the plant states without involv-
ing the additional damping terms in the weight update
laws. The control laws and update laws of [11,12], how-
ever, involve Kronecker products, which make the di-
mension of adaptive weighting gains substantially large.

In this paper we take a similar approach to the one
given in [11, 12] in characterizing approximation errors.
In particular, our formulation builds on the results given
in [13] which shows that the multilayer neural network
is capable of approximating nonlinear functions as well
as their derivatives. By approximating the derivative of
the nonlinear function rather than the function itself,
we are now allowed to show that the approximation er-
ror can be made artitrarily small in the sense of Lips-
chitz norm and is thus contained in a small gain-type
norm bounded conic sector with arbitrarily small sector
bound. Accordingly, we can characterize neuro adaptive
control laws that guarantee partial asymptotic stability
of the closed-loop system, that is, Lyapunov stability of
the overall closed-loop states and convergence with re-
spect to the plant state. The neuro adaptive controllers
are constructed without requiring explicit knowledge of
the system dynamics other than the fact that the plant
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dynamics are continuous and piecewise continuously dif-
ferentiable.

We emphasize in this paper that we take the conven-
tional form of the control laws and update laws with-
out damping (modification) terms in the update laws.
The difference is that the stability property is drawn
by viewing the neural network as an approximator of
nonlinear functions in a certain way that has not been
considered in the literature. To focus our attention to
this point, we consider a simple problem in this paper,
that is, neural network control with the full-state feed-
back and matched uncertainties. It is expected that our
approach can be easily extended to deal with a variety
of more general cases since the control architecture is
the same as in the literature.

The notation used in this paper is fairly standard.
Specifically, R denotes the set of real numbers, N0 de-
notes the set of nonnegative integers, (·)T denotes trans-
pose, tr(·) denotes the trace operator, ‖ · ‖ denotes the
Euclidean vector norm, and λmax(·) (resp., λmin(·)) de-
notes the maximum (resp., minimum) eigenvalue of a
Hermitian matrix. Furthermore, we write ϕ′(x) for the

Fréchet derivative of ϕ at x and
◦

D for the interior of the
set D.

2. Nonlinear Function Approximation

In this section we propose a new treatment of approxi-
mating nonlinear functions suitable for developing neuro
adaptive control laws that can guarantee asymptotic sta-
bility of nonlinear uncertain dynamical systems. To this
end, we first review some of the important results given
in [13] which is necessary for our main theorems of this
paper. For the statements of this section let C(Rn) be
the set of all functions f : R

n → R such that f(·) is
continuous on R

n. Furthermore, for l ∈ N0, we define
Cl(Rn) � {f : R

n → R : Dαf ∈ C(Rn), |α| ≤ l}, where

α � (α1, . . . , αn) denotes a multi-index with respect to
the differential operator Dα defined by

Dα �
∂|α|

∂α1x1 · · · ∂αnxn

, (1)

with order |α| � α1 + · · · + αn.

Definition 2.1 [13]. Let l ∈ N0 be given. Then a
function σ : R

n → R is called l-finite if σ ∈ Cl(R) and
0 <

∫
Rn ‖Dlσ(x)‖λ(dx) < ∞, where λ is the Lebesgue

measure on the measure space (Rn,B(Rn)) and B(Rn)
is the Borel σ-algebra generated by the open subsets of
R

n.

The following theorem states that the single-hidden-
layer feedforward neural network (see Figure 2.1) is ca-
pable of approximating nonlinear functions as well as
their derivatives.

Theorem 2.1 [13]. Let δ : R
n → R be a measurable

function and let γ ∈ R be a given positive constant.
Then for any compact set Dc ⊂ R

n, there exist an l-
finite activation function σ : R

n → R
s and a weighting

Hidden layerInput layer Output layer

1

Figure 2.1: Single-hidden-layer feedforward neural net-
work

matrix W ∈ R
s such that

‖Dαδ(x) − Dα(WTσ(x))‖ < n− 1

2 γ−1,

a.e. x ∈ Dc, |α| ≤ l, (2)

provided that the dimension of activation functions, s,
is sufficiently large.

In Theorem 2.1, Dαδ(x) is defined as a distributional
(generalized) derivative [14]. The class of functions that
are l-finite includes the usual squashing functions such
as logistic, hyperbolic tangent, radial basis functions,
splines, etc., which are commonly used in the neural
network control literature.

For our purposes, we are particularly interested in
Theorem 2.1 with the special case of l = 1. In this
case, the restatement of Theorem 2.1 is as follows: for
any compact set Dc ⊂ R

n, there exist an 1-finite acti-
vation function σ : R

n → R
s and a weighting matrix

W ∈ R
s such that ϕ(x) � δ(x) − WTσ(x) satisfies

‖ϕ′(x)‖ < γ−1, a.e. x ∈ Dc, (3)

provided that the dimension of activation functions, s,
is sufficiently large.

Using the special case of Theorem 2.1 described by
(3), we show that given a measurable function, there al-
ways exist a weighting matrix and an activation function
such that approximation error is contained in a small
gain-type norm bounded conic sector with arbitrarily
small sector bound. The precise statement is given in
the following theorem.

Theorem 2.2. Let δ : R
n → R be a function such

that δ(·) is continuous and piecewise continuously dif-
ferentiable, and let γ ∈ R be a given positive con-
stant. Then for any convex compact set Dc ⊂ R

n such

that 0 ∈
◦

Dc, there exist a smooth activation function
σ : R

n → R
s and a weighting matrix W ∈ R

s such that
ϕ(x) � δ(x) − WTσ(x) satisfies

ϕT(x)ϕ(x) ≤ γ−2xTx, x ∈ Dc, (4)

provided that the number of activation functions, s, is
sufficiently large.
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Figure 2.2: Visualization of function ϕ(·) for n = 1

Proof: First, note that there exist WT
1 ∈ R

s1 and
a 1-finite function σ1 : R

n → R
s1 such that δ(0) =

WT
1 σ1(0). Furthermore, it follows from Theorem 2.1

that there exist W2 ∈ R
s2 and a 1-finite function σ2 :

R
n → R

s2 such that σ2(0) = 0 and (3) holds with W =
[WT

1 , WT
2 ]T and σ(x) = [σT

1 (x), σT
2 (x)]T. Next, consider

the function ϕ(νx), ν ∈ [0, 1], x ∈ Dc. Since ϕ(·) is
piecewise continuously differentiable, it follows that

d

dν
ϕ(νx) = ϕ′(νx)x, a.e. x ∈ Dc. (5)

Note that since Dc is convex, νx ∈ Dc for all x ∈ Dc and
ν ∈ [0, 1]. Now, integrating both sides of (5) in ν from
0 to 1 yields

ϕ(x) − ϕ(0) =

∫ 1

0

ϕ′(νx)dν · x, x ∈ Dc, (6)

where the integral in (6) is well defined. Hence, since
ϕ(0) = 0, it follows from (3) and the Cauchy-Schwartz
inequality that

ϕT(x)ϕ(x) = xT

[∫ 1

0

ϕ′(νx)dν

]T [∫ 1

0

ϕ′(νx)dν

]
x

≤

[∫ 1

0

‖ϕ′(νx)‖dν

]2

xTx

≤

[∫ 1

0

γ−1dν

]2

xTx

≤ γ−2xTx, x ∈ Dc, (7)

which completes the proof. �

Remark 2.1. The approximation error induced in
Theorem 2.2 corresponds to a nonlinear small gain-type
norm bounded uncertainty characterization (see Fig-
ure 2.2). Note that in the proof of Theorem 2.2 we
used Theorem 2.1 for the case where the first derivative
(gradient) of δ(·) can be arbitrarily well approximated;
in the conventional neural network control it is assumed
that the unknown function itself (zeroth derivative of
the function) is approximated arbitrarily well. This con-
ceptual difference leads to the substantial difference be-
tween the results of this paper (asymptotic stability) and
the conventional results (ultimate boundedness) in the
context of neural network adaptive control.

Using Theorem 2.2, in the following sections we
construct neuro adaptive control laws for continuous-
and discrete-time systems, respectively, that guarantee
asymptotic stability with respect to the plant states.

3. Stable Neuro Adaptive Control for Nonlin-
ear Uncertain Systems

Based on the discussion in Section 2 on the nonlinear
function approximation, in this section we characterize
neural adaptive feedback control laws for nonlinear un-
certain dynamical systems that guarantee asymptotic
stability, rather than ultimate boundedness, with re-
spect to the plant states. Specifically, consider the con-
trolled nonlinear uncertain dynamical system G given
by

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (8)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input, f : R

n → R
n is continuous and piecewise

continuously differentiable on R
n with f(0) = 0, and

G : R
n → R

n×m. For the nonlinear uncertain system G
we assume that the required properties for the existence
and uniqueness of solutions are satisfied, that is, f(·),
G(·), and u(·) satisfy sufficient regularity conditions such
that (8) has a unique solution forward in time.

In this paper, we assume that f(·) is an unknown
function, and f(·) and G(·) are given by

f(x) = Ax + ∆f(x), (9)

G(x) = BGn(x), (10)

where A ∈ R
n×n and B ∈ R

n×m are known matrices,
Gn : R

n → R
m×m is a known matrix function such

that det Gn(x) �= 0, x ∈ R
n, and ∆f : R

n → R
n is an

uncertain function belonging to the uncertainty set F
given by

F = {∆f : R
n → R

n : ∆f(0) = 0,

∆f(x) = Bδ(x), x ∈ R
n}, (11)

where δ : R
n → R

m is an uncertain, continuous, piece-
wise continuously differentiable function on R

n. It is
important to note that since δ(·) is continuously differ-
entiable and δ(0) = 0, it follows from Theorem 2.2 that
there exist an activation function σ : R

n → R
s and the

(optimal) weighting matrix W ∈ R
s×m such that

ϕ(x) � δ(x) − WTσ(x), (12)

satisfies (4).

Theorem 3.1. Consider the nonlinear uncertain dy-
namical system G given by (8) where f(·) and G(·) are
given by (9) and (10), respectively, and ∆f(·) belongs to
F . Assume that (A, B) is stabilizable and let K ∈ R

m×n

be such that As � A + BK is Hurwitz. Furthermore,
for a given γ > 0, assume there exist positive-definite
matrices P ∈ R

n×n and R ∈ R
n×n such that

0 = AT
s P + PAs + γ−2PBBTP + In + R. (13)
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Finally, let Q ∈ R
m×m and Y ∈ R

s×s be positive defi-
nite. Then the neural adaptive feedback control law

u(t) = G−1
n (x(t))

[
Kx(t) − ŴT(t)σ(x(t))

]
, (14)

where ŴT(t) ∈ R
m×s and σ : R

n → R
s is a given basis

function such that σ(0) = 0, with update law

˙̂
WT(t) = QBTPx(t)σ(x(t))TY, ŴT(0) = ŴT

0 , (15)

guarantees that there exists a compact, positively in-
variant set Dα ⊂ R

n × R
m×s such that (0, WT) ∈ Dα,

where WT ∈ R
m×s, and the solution (x(t), ŴT(t)) of

the closed-loop system given by (8), (14), (15) is Lya-
punov stable and x(t) → 0 as t → ∞ for all ∆f(·) ∈ F

and (x0, Ŵ
T
0 ) ∈ Dα.

Proof. The proof is omitted due to space limitations.
�

Remark 3.1. Note that the conditions in Theo-
rem 3.1 imply partial asymptotic stability of the closed-

loop system, that is, the solution (x(t), ŴT(t)) ≡
(0, WT) of the overall closed-loop system is Lyapunov
stable and x(t) → 0 as t → ∞. Hence, it follows from

(15) that
˙̂

WT(t) → 0 as t → ∞.

Remark 3.2. In the case where the neural network
approximation in the sense of (3) holds on R

n, since the
Lyapunov function used in the proof of Theorem 3.1 is
a class K∞ function, it follows that the control law (14)
ensures global asymptotic stability with respect to x.
If the uncertain function δ(·) possesses a linear growth
rate, then it is likely to satisfy (3) on R

n since in this case
δ′(·) is uniformly bounded over the whole space R

n. To
guarantee global asymptotic stability, this assumption
is much weaker than the assumption that the uncertain
function is perfectly approximated over the whole space
R

n, which has to be made in the conventional uncer-
tainty error characterization. However, the existence of
a global neural network approximator for an uncertain
nonlinear map cannot in general be established. Yet,
for a given arbitrarily large compact set Dc ⊂ R

n, there
exists an approximator of the derivative of the unknown
nonlinear map up to a desired accuracy, and hence our
neuro adaptive controller guarantees semiglobal partial
asymptotic stability.

Remark 3.3. Note that the neuro adaptive con-
troller (14) and (15) can be constructed to guarantee
partial asymptotic stability using standard linear H∞

theory. Specifically, it follows from standard H∞ theory
[15] that ‖G(s)‖∞ < γ, where G(s) = E(sIn − As)

−1B
and E is such that ETE = In+R, if and only if there ex-
ists a positive-definite matrix P satisfying the bounded
real Riccati equation (13). It is well known that (13) has
a positive-definite solution if and only if the Hamiltonian
matrix

H =

[
As γ−2BBT

−ETE −AT
s

]
, (16)

has no purely imaginary eigenvalues.

It is important to note that the adaptive control law
(14) and (15) does not require the explicit knowledge
of the optimal weighting matrix W . Furthermore, no
specific structure on the nonlinear dynamics f(x) is re-
quired to apply Theorem 3.1 other than the fact that
f(x) is continuous and piecewise continuously differen-
tiable. However, if (8) is in normal form [16], then we
can always construct a neuro adaptive control law with-
out requiring knowledge of the system dynamics f(x).
To see this, assume that the nonlinear uncertain system
G is generated by

q
(ri)
i (t) = fui(q(t)) +

m∑
j=1

Gs(i,j)(q(t))uj(t), t ≥ 0,

i = 1, · · · , m, (17)

where q = [q1, · · · , q
(r1−1)
1 , · · · , qm, · · · , q

(rm−1)
m ]T, q(0) =

q0, q
(ri)
i denotes the rith derivative of qi, and ri denotes

the relative degree with respect to the output qi. Here
we assume that the square matrix function Gs(q) com-
posed of the entries Gs(i,j)(q), i, j = 1, · · · , m, is such

that detGs(q) �= 0, q ∈ R
r̂, where r̂ = r1 + · · · + rm is

the (vector) relative degree of (17) and r̂ = n. Further-
more, we assume that fui(·) is continuous and piecewise
continuously differentiable on R

n, and fui(0) = 0.

Next, define xi �

[
qi, · · · , q

(ri−2)
i

]T

, i =

1, · · · , m, xm+1 �

[
q
(r1−1)
1 , · · · , q

(rm−1)
m

]T

, and x �[
xT

1 , · · · , xT
m+1

]T
, so that (17) can be described by (8)

with

A =

[
A0

0m×n

]
, ∆f(x) =

[
0(n−m)×1

fu(x)

]
,

(18)

G(x) =

[
0(n−m)×m

Gs(x)

]
,

where A0 ∈ R
(n−m)×n is a known matrix of zeros and

ones capturing the multivariable controllable canonical
form representation [17], fu : R

n → R
n is an unknown

function and satisfies fu(0) = 0, and Gs : R
n → R

m×m.
Note that ∆f(·) ∈ F with B = [0m×(n−m), Im]T and
δ(x) = fu(x). In this case, Gn(x) ≡ Gs(x). Further-
more, since A is in multivariable controllable canonical
form, we can always construct K such that A + BK is
Hurwitz.

4. Stable Neuro Adaptive Control for Discrete-
Time Nonlinear Uncertain Systems

In this section, we develop a similar framework to the
framework presented in Section 3 for discrete-time non-
linear uncertain systems. Specifically, consider the con-
trolled nonlinear uncertain dynamical system G given
by

x(k+1) = f(x(k))+G(x(k))u(k), x(0) = x0, k ∈ N0,
(19)
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where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the
control input, f : R

n → R
n is continuous, piecewise

continuously differentiable, and satisfies f(0) = 0, and
G : R

n → R
n×m.

As in Section 3, we assume that f(·) is an unknown
function and f(·) and G(·) are given by (9) and (10)
where A ∈ R

n×n and B ∈ R
n×m are known matrices,

Gn : R
n → R

m×m is a known matrix function such that
detGn(x) �= 0, x ∈ R

n, and ∆f : R
n → R

n is an uncer-
tain function belonging to the uncertainty set F given
by (11) where δ : R

n → R
m is an uncertain, continuous,

piecewise continuously differentiable function such that
δ(0) = 0. As discussed in Section 3, since δ(x) is piece-
wise continuously differentiable and δ(0) = 0, it follows
that there exist an activation function σ : R

n → R
s and

the (optimal) weighting matrix W ∈ R
s×m such that

the approximation error ϕ(x) defined by (12) satisfies
(4).

Theorem 4.1. Consider the nonlinear uncertain dy-
namical system G given by (19) where f(·) and G(·) are
given by (9) and (10), respectively, and ∆f(·) belongs to
F given by (11). Assume that (A, B) is stabilizable and,
for a given γ > 0, let P ∈ R

n×n be the positive-definite
solution to the Riccati equation

P = ATPA−ATPB(BTPB)−1BTPA+(α+β)In +R,
(20)

where R ∈ R
n×n is positive definite, α > 0, and β satis-

fies

β ≥ γ−2
(
λmax(B

TPB) + a
1 + xTPx

c + σT(x)σ(x)

)
, x ∈ Dc,

(21)

a = max{c, n/λmin(P )}BTPB
(
Im + 1

αγ2 BTPB
)
, (22)

and c > 0. Then the neural adaptive feedback control
law

u(k) = G−1
n (x(k))

[
Kx(k) − ŴT(k)σ(x(k))

]
, (23)

where ŴT(k) ∈ R
m×s, σ : R

n → R
s is a given basis

function, and

K = −(BTPB)−1BTP (24)

with update law

ŴT(k + 1) = ŴT(k) + 1
c+σT(x(k))σ(x(k))B

†[x(k + 1)

− Asx(k)]σT(x(k)), ŴT(0) = ŴT
0 , (25)

guarantees that there exists a compact, positively in-
variant set Dα ⊂ R

n × R
m×s such that (0, WT) ∈ Dα,

where WT ∈ R
m×s, and the solution (x(k), ŴT(k)) of

the closed-loop system given by (19), (23), (25) is Lya-
punov stable and x(k) → 0 as k → ∞ for all ∆f(·) ∈ F

and (x0, Ŵ
T
0 ) ∈ Dα.

Proof. The proof is omitted due to space limitations.
�

Remark 4.1. The conditions in Theorem 4.1 imply
partial asymptotic stability the closed-loop system, that
is, the solution (x(k), ŴT(k)) ≡ (0, WT) of the overall
closed-loop system is Lyapunov stable and x(k) → 0 as

k → ∞. Hence, it follows from (25) that ŴT(k + 1) −

ŴT(k) → 0 as k → ∞.

5. Illustrative Numerical Example

In this section we present a numerical example to
demonstrate the utility of the proposed neuro adaptive
control framework for adaptive stabilization. Specifi-
cally, consider the uncertain controlled Liénard system
given by

q̈(t) + c(q(t))q̇(t) + k(q(t)) = bu(t),

q(0) = q0, q̇(0) = q̇0, t ≥ 0, (26)

where c : R → R and k : R → R are unknown, con-
tinuously differential functions. Note that with x1 =
q and x2 = q̇, (26) can be written in state space

form (8) and (4) with x = [x1, x2]
T, A =

[
0 1
0 0

]
,

∆f(x) = [0, −c(x1)x2 − k(x1)]
T, B = [0, b]T, and

Gn(x) = 1. Here, we assume that the unknown func-
tion ∆f(x) can be written as ∆f(x) = Bδ(x), where
δ(x) = 1

b
[−c(x1)x2−k(x1)] is an unknown, continuously

differentiable function. Next, let K = 1
b
[k1, k2], where

k1, k2 are arbitrary scalars, so that As = A + BK =[
0 1
k1 k2

]
. Now, with the proper choice of k1 and k2,

it follows from Theorem 3.1 that if there exists P > 0
satisfying (13), then the neuro adaptive feedback con-
troller (14) guarantees that x(t) → 0 as t → ∞. Specif-
ically, here we choose k1 = −1, k2 = −1, γ = 3, and
R = I2, so that P satisfying (13) is given by

P =

[
3.1586 1.0627
1.0627 2.3765

]
. (27)

With c(x1) = 2(x4
1 − 1), k(x1) = x1 + tanh(x1), b = 3,

Q = 1, Y = 0.1I12, σ(x) =
[

1
1+e−a1x1

, · · · , 1
1+e−3a1x1

,

1
1+e−a2x2

, · · · , 1
1+e−3a2x2

]
, where a1 = a2 = 0.5, and ini-

tial conditions x(0) = [1, 1]T and Ŵ (0) = 012×1, Fig-
ure 5.3 shows the phase portrait of the controlled and
uncontrolled system. Note that the neuro adaptive con-
troller is switched on at t = 10 sec. Figure 5.4 shows the
state trajectories versus time and the control signal ver-
sus time. Finally, Figure 5.5 shows the neural network
weighting functions versus time.

6. Conclusion

A novel approach of characterizing nonlinear function
approximation was presented. As a result, the standard
neuro adaptive control framework for continuous- and
discrete-time nonlinear uncertain dynamical systems
was shown to guarantee asymptotic stability, rather
than ultimate boundedness, with respect to the plant
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Figure 5.3: Phase portrait of controlled and uncon-
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Figure 5.4: State trajectories and control signal versus
time

states. Furthermore, in the case where the nonlinear sys-
tem is represented in normal form, the neuro adaptive
controllers were constructed without requiring knowl-
edge of the system dynamics other than the fact that
the plant dynamics are continuous and piecewise contin-
uously differentiable. The proposed uncertainty charac-
terization considerably reduces the conservativeness of
the Lyapunov approach.
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