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Abstract— The potential applications of neural adaptive
control for pharmacology in general, and anesthesia and
critical care unit medicine in particular, are clearly apparent.
Specifically, monitoring and controlling the depth of anesthesia
in surgery is of particular importance. Nonnegative and com-
partmental models provide a broad framework for biological
and physiological systems, including clinical pharmacology,
and are well suited for developing models for closed-loop
control of drug administration. In this paper, we develop
a neural adaptive output feedback control framework for
nonlinear uncertain nonnegative and compartmental systems.
The proposed framework is Lyapunov-based and guarantees
ultimate boundedness of the error signals. In addition, the
neural adaptive controller guarantees that the physical systa

states remain in the nonnegative orthant of the state space.

Finally, the proposed approach is used to control the infusion
of the anesthetic drug propofol for maintaining a desired
constant level of depth of anesthesia for noncardiac surgery.

I. INTRODUCTION

which exchange variable nonnegative quantities of mdteria
with conservation laws describing transfer, accumulation
and elimination between the compartments and the environ-
ment. It thus follows from physical considerations that the
state trajectory of such systems remains in the nonnegative
orthant of the state space for nonnegative initial condgio

In this paper, we extend the results of [3] to nonnegative
and compartmental dynamical systems with applications to
the specific problem of automated anesthesia. Specifically,
we develop an output feedback neural network adaptive
controller that operates over a tapped delay line of avigilab
input and output measurements. The neuro adaptive laws for
the neural network weights are constructed using a linear
observer for the nominal normal form system error dynam-
ics. The approach is applicable to general class of nonlinea
nonnegative dynamical systems without imposing a strict
positive real requirement on the transfer function of the
linear error normal form dynamics. Furthermore, since in
pharmacological applications involving active drug adisn
tration control inputs as well as the system states need to be
nonnegative, the proposed neuro adaptive output feedback
controller also guarantees that the control signal remains

Neural networks offer an ideal framework for on-linenonnegative. We emphasize that the proposed framework
system identification and control of many complex uncertainddresses adaptieeitput feedbackontrollers for nonlinear
nonlinear dynamical systems. One of the key aspects obmpartmental systems withnmodeled dynamicef un-
neural networks is that a very rich class of continuouknown dimensiowhile guaranteing ultimate boundedness
nonlinear maps can be approximated from the collectivef the error signals corresponding to the physical system
action of very simple, autonomous processing units instates as well as the neural network weighting gains. Output
terconnected in simple ways. This massively parallel ant¢edback controllers are crucial in clinical pharmacology
highly redundant processing architecture has resulted #ince key physiological (state) variables cannot be measur
concrete accomplishments in pattern recognition, systein practice.
identification, and adaptive control.

Given the complexity, uncertainties, and nonlinearities
inherent in pharmacokinetic and pharmacodynamic models 1.
needed to capture the wide effects of pharmacological
agents and anesthetics in the human body, neural networ,
can provide an ideal framework for addressing adaptive con-, ~ . ;
trol f%r clinical pharmacology [1]. Nonnegati%e anpd com- egaFve dynr?mma! systerlns [$]’h[4] that arg ne(_:fessl?ryffor
partmental models provide a broad framework for biologica‘l'ieve oping the main results of this paper. Specifically, for

: - - h S - € R™ we write x >> 0 (resp.,x >> 0) to indicate that
and physiological systems, including clinical pharmacolf 3 . L .
ogy, and are well suited for the problem of closed-looggvery component of is nonnegative (resp., positive). In this

i . oy .“'Case we say that is honnegativeor positive respectively.
control of drug administration. Specifically, nonnegativg™: : nxm ; PP
and compartmental dynamical systems [2] are composed ewise, A € R is nonnegativeor positiveif every

; f A is nonnegative or positive, respectively, which is
homogen interconn ms (or compartm ;tryo e 2
omogeneous interconnected subsystems (or compart ewr ten asA >> 0 or A >> 0, respectively. LetRi and

M ATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
d some key results concerning linear and nonlinear non-
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R" denote the nonnegative and positive orthantR'ofthat
is, if 2 € R”, thenz € R, andz € R? are equivalent,
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respectively, tac >> 0 andx >> 0. Furthermore, we write  As discussed in the Introduction, control (source) inputs
()T to denote transpose( { for the trace operatoh,,;,(-)  of drug delivery systems for physiological and pharmaco-
to denote the minimum eigenvalue of a Hermitian matrixlogical processes are usually constrained to be nonnegativ
I - || for a Euclidean vector norn} - || for the Frobenius as are the system states. Hence, in this paper we develop
matrix norm, and’’(z) for the Féchet derivative o¥ atz.  neuro adaptive dynamic output feedback control laws for
Finally, M ® N denotes the Kronecker product of matricesssentially nonnegative systems with nonnegative control
M and N. The following definition introduces the notion inputs. Specifically, for a given desired set poipt €

of a nonnegative (resp., positive) function. Rf and for a givene > 0, our aim is to design a

Definition 2.1: Let T > 0. A real functionu : [0,7] — honnegative control input(t), ¢ > 0, predicated on the
R™ is anonnegativeresp.,positivg functionif w(t) >>0 System measurementt), ¢ > 0, such that|y(t) —ya|| < e
(resp.,u(t) >> 0) on the intervall0, T7. for all t > T, whereT" € [0,00), andz(t) == 0, t > 0,

N
The next definition introduces the notions of essentiall)"?md“(t) 220,120, forallzo € R,.
nonnegative matrices and compartmental matrices. In this paper, we assume that for the nonlinear dynamical

Lo . nxn ; ; system (2), (3), the conditions for the existence of a glgbal
Definition 2.2 ([2]): Let A € R™". A is essentially defined diffeomorphism transforming (2), (3) into normal

nonnegativeif A, ;) > 0, 4,7 = 1,---,n, i # j. o .

Ais compartmenzt?ilif A is essentially nonnegative and B?]Efgor[r?é'rp[ﬁi]sr%? 'Sﬂa%t,'LSf'_(?dRSO atfgto tfnﬁrc?i O%X}S;Sf ]1% %!obal
" C < =1 .n. : o :

YAy £0.j=1,-n R"" — R", and a C° function f, : R” x R"~" — R

The following definition introduces the notion of essensych that, in the coordinates
tially nonnegative vector fields [2].

Definition 2.3: Let f = [f1,--, fa]* : D — R", where { i ] £ T(x), (4)
D is an open subset dk™ that containsRi. Then f is
essentially nonnegativié f;(z) > 0, forall s = 1,....n,  where ¢ 2 [y, 51, -, 0\ 7\ Yoy Yoo Y™ s
andz € R such thatz; = 0, wherexz; denotes theth yy’lfl), = R, z€eR"™", andr £ 7  +-- +
element ofz. rm is the (vector) relative degree ¢t G given by (2), (3)

In this paper we consider controlled nonlinear dynamicap equivalent to
systems of the form :

§(t) = fe(&(), 2(t) + Ge(£(t), 2(D)u(t),  £(0) = &o,

i(t) = fzt) + Gx@®)u®), 2(0)=z¢, t>0, (1) t=>0, (5
O SE0) LGOM0. 00 00y g -
wherexz(t) e R*, t > 0, u(t) e R™, t >0, f: R" — R" t) = CE(t 7
is locally Lipschitz continuous and satisfig$0) = 0, and y.( ) 5(_)’ o N E )
G :R? I Rnxm, with appropriate initial conditiong, € R™ andz, € R"~7,
The following definition and proposition are needed forWhere 0
the main results of the paper. fel€,2) = A6 + T _ | Yn=—m)xm
b - + fu §7 z ) G £7 z - bl b (8)
Definition 2.4: The nonlinear dynamical system given by el6.2) (6,2), Gel&,2) Gs(2)
(1) is nonnegativef for every z:(0) € Ri andu(t) >> 0, Ao < O(n—m)x1
t > 0, the solutionz(¢), t > 0, to (1) is nonnegative. A= A | ful,2) = fu(Z) ' ©)

T2 [T 21T, Ag € RU—™)*7 s a known matrix of zeros
111. NEURAL ADAPTIVE OUTPUT FEEDBACK CONTROL and ones capturing the multivariable controllable carainic

FORNONLINEAR NONNEGATIVE UNCERTAIN SYSTEMs ~ [Orm representation [7]A € R™*" is such thatA is
asymptotically stable,f, : R* — R™ is an unknown

In this section we consider the problem of characterizir%nCtion and satisfieg, (0) = 0, C' € R™*" is a known

neural adaptive dynamic output feedback control laws fdj1alrix of zeros and ones capturing the system output, and

. : : R mXm known matrix function such that
nonlinear nonnegative and compartmental uncertain dynargs : R — R™ ™ is an un
ical systems to achieveet-pointregulation in the nonneg- ¢t Gs(Z) # 0, & € R™. Furthermore, we assume that for a

ative orthant. Specifically, consider the controlled squardvenyq € R’ there existz. € R"~" andu, € R}, such

nonlinear uncertain dynamical systeyngiven by thatz, = 7 !(%,) >> 0 and
i(t) = f(z(t) + Gla(t))ult), x(0)=x, t>0, (2) 0 = fe(&e,ze) + Gel&e, ze e, (10)
y(t) = h(=(t)), 3) 0 = falbe 2), (1)
wherez, £ [¢X,2T]T and &, is given withy; = yq4;, i =

wherez(t) € R", t > 0, is the state vector(t) € R™, _ (ri1) ,
t > 0, is the control inputy(t) € R™, ¢t > 0, is the 1,---,m, andy; = --- =y ' 7 =0, =1+, m.
system outputf : R” — R” is essentially nonnegative In addition, we assume that (6) is input-to-state stable at
but otherwise unknown and satisfigg)) = 0, G : R” —  2(t) = z. with {(t) — & viewed as the input; that is, there
R™*™ js an unknown nonnegative input matrix function,€Xist a classCL functions(-, -) and a classC function~(-)
andh : R* — R™ is a nonnegative function and satisfiessuch that

h(0) = 0. We assume thaf(-), G(-), andh(-) are smooth _ < _

(i.e., C> mappings) and the control input(-) in (2) is I28) = zell < mlllz0 =z #)

restricted to the class addmissible controlonsisting of : _ > 12
measurable functions such thatt) € R™, ¢ > 0. at (0??; &) §e> » 120.(12)
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Note that(&e, z.) € R™ x R”~" is an equilibrium point of U (t — (0 — 70 — D)), >0, (16)
(5), (6) if and only if there exists, € R’} such that (20), . . ) )
(11) hold. Furthermore, we assume that, for a givens 0, (]| < ¢*, ¢ >0, and¢* > 0 is a uniform bound of;(-)
the functions fo (7 (z)) — fu(T (ze)) — Gs(T (ze))ue and  OVer B(0).

Gs(7 (z)) — Bs, where B; € R™*™, can be approximated In light of the above theorem, it follows that if the
over a compact seb. C ]Ri by a linear in the parameters dynamical systeny is observable and its state trajectory

neural network up to a desired accuracy so that there existt), ¢ > 0, evolves onD,, then there exist; : R" x
1 :R” — R™ andes : R” — R™™ such thate; (z)|[ < R2"™~" — R™ ande, : R" x R2"™—" _, Rm*m syich that

e* and|lex(z)||r < €%, € D, and L\é\ﬁl%?,éﬁi)ﬂ 0< e* and ||ez(z(t),C(t))]|lr < ", t > 0,
FolT(2)) = fulT (ze)) = Gs(T (xe))ue ’ -
=Wloi(z) +e1(z), x€De, (13) (T (2(1))) = fu(T (we)) — Gs(T (xe))ue
Go(T (z)) — By = W [I,, ® 02()] =Wla1(¢(t) +ei(x(t),C(1), (A7)
+e5(z), = €Dy, (14) Go(T (x(t))) — Bs = Wy [In ® 02(((1))]
+ea(2(1), C(1)). (18)

whereW; € R*1*™ and W, € R™52X™ gre optimalun-
known (constant) weights that minimize the approximation:or the statement of the next result, define the projection
errors overD,, o1 : R® — R andoy : R* — R*2 are operator PrcﬂW Y) given by

sets of basis functions such that each component; ¢f) P ’
and o-(-) takes values between 0 and 1, and-) and Vi w9 <0
eo(-) are the modeling errors. Singg (-) and G4(-) are N , (W) <0, L
continuous, we can chooss () and o,(-) from a linear Proj(W,y)2{ Y, if u(W) >0 andy/ (W)Y <0,

spaceX of continuous functions that forms an algebra and y — w T W (W)Y W otherwis

separates points iD.. In this case, it follows from the W (W)p'T (W) W), 196
Stone-Weierstrass theorem [8, p. 212] tkatis a dense . e T )
subset of the set of continuous functions®n Now, as is whereW € R**™ Y € R"*™, p(W) = —

Lgicgfﬁsitr:ljzfiznggglneum eﬁ%gtiv%contzol)liter?tg?e, Wmax € R is the norm bound imposed difr, ande, > 0.
ad = 1, VV2,01(X), 02(T i PR £ sxm sXm
involving the estimates of the optimal weights and basi ?éﬁc}vr\'gt'thg;t/en the matriced’ € R andy” € R*7™,
functions as our adaptive control signal. However, in ord

to develop an output feedback neural network, we use i T TR _

the recent approach given in [9] for reconstructing the (W = W)~ (Proj(W,Y) — Y]
system states via the system delayed inputs and outputs.

Specifically, we use anemory unitas a particular form of = _lcoly(W — W)] T (Proj(coli (W), coly(Y))

a tapped delay line that takes a scalar time series input and i=1
provides a vector output consisting of the present values —col;(Y))
of the system outputs and system inputs and their delayed <0, (20)

values. As shown in [9], such a memory unit can be used

to characterize an equivalent input-output represemtdtio wherecol;(X) denotes theth column of the matrixX.

(2), (3) in the sense of guaranteeing the existence of @ Theorem 3.2:Consider the nonlinear uncertain dynam-
function g(-) and a numbet! such that the future outputs . | systemG given by (2) and (3) wheref : R™ —

of (2), (3) can be determined based on a number of p . tiall ! a R RAXM |
observations of the inputs and outputs of (2), (3). The® 'S essenually nonnegalive ar : - IS
following theorem is given in [9]. nonnegative. For a givey € R, assume there exist

Theorem 3.1 ( [9]): Consider the nonlinear dynamical "Onnegative vectors, < R} andu. € R} such that
systemgG given by (2), (3). Assume that the state vector _
2(t), t > 0, of (2), (3) evolves onB,(0) £ {z € R" : 0 = flwe)+Glze)ue, (21)
|z]| < r} and G is observable. Furthermore, assume that Ya = h(ze). (22)

the system outpuy(t), ¢ > 0, and its derivatives up to I . .
the order(n — 1) ar(e)bounded for alt > 0. Then, given Furthermore, assume that the equilibrium paigtof (2) is

an arbitrarye* > 0, there exists a set of bounded weightglobally asymptotically stable with(t) = u.. In addition,

W and a positive scalai > 0 such that any continuous assume that there exists a global diffeomorph&mR™ —
function g(z,u) : R" x R™ — RP can be approximated R” such thatG can be transformed into the normal form

over the compact se8,.(0) by a linear in the parameters 9iven by (5) and (6), and (6) is input-to-state stablezat
neural networﬁ of the f(()rr)n Y P with £(¢) — & viewed as the input. Finally, le:, Q2 €

" R™*™ be positive definite. Then the neural adaptive output
g(z(t),u(t)) = W a(C(t) +e(x(t),((t)), feedback control law

le(z(®), C@II < & t=0, (15) () _{ at), if a(t) >> 0,

wherez(t), t > 0 is the solution to (2), 0, otherwise (23)

) = [, pnt—d, 5t —(n-1)d), -, where
Ym (), Ym(t — d), -+, ym(t — (n — 1)d); R -1
w ), (t—d), o ult— (= = Dd),  alt)=— (B + WE Ol @ 02C0)]) W @r1(C0)),
e U (U), up (= d), - (24)
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B, € R™*™ s positive definite(t), t > 0, is given by an approximator for the unknown nonlinear map up to a
(16), W, (t) € Rs1xm ¢ >, ansz(t) € Rms2xm ¢+ > desired accuracy. This assumption ensures that in the error

with update laws spaceD, there exists at least one Lyapunov level set such
. . . that D, C D,. In the case wheref,(-) and G(-) are
Wi(t) = Q1Proj(Wi(t), o1 (¢(t)EX (t)PBy), continuous onR™, it follows from the Stone-Weierstrass

R R } arbitrarily large compact seb.. in the sense of (13) and
Wa(t) = QaProj(Wa(t), [Im ® o2 (C()|u(t)EX (1) PBy),  (14) and hence (17) and (18) hold with sufficiently small
Wa(0) = W, (26) In addition, we assume that>(0) is sufficiently close to
) 2 20 the optimal weight, so thatB, + Wa(t) [, ® o2(¢(1))]
where P € R"™" is a positive-definite solution of the is nonsingular for alk > 0.
Lyapunov equation Remark 3.2:Implementation of (24) requires a fixed-
. TS | S ~ ~ point iteration at each integration step; that is, the aler
0=(A-LO)P+P(A-LC)+R, R>0, (27) contains an algebraic constraint an For each choice
andé&.(t), t > 0, is the solution to the estimator dynamics ©f o1(-) and o»(-) this equation must be examined for
i solvability in terms ofw. It is more practical to avoid
E(t) = A&(t) + L(y(t) — ye(t) —ya), &(0) =& this iteration by using one-step delayed valuesuofn
>0 (28) calculatinga. Implementations using both approaches resuilt
y(l) = CE(D), (29) in imperceptible differences in our numerical studies.

Remark 3.3:In the case of systems of unknown di-
where&.(t) € R, t > 0, A € R"™" is asymptotically mension but with known relative degree, Theorem 3.2
stable,L. € R"*™ is such thatd — LC is asymptotically applies with a slight modification to the input vector of
stable, andB, £ [omx(r_m),]m]T, guarantees that there the neural network; that is; in (16) should be replaced
exists a compact positively invariant s@&, c R™ x by a sufficiently large value that is greater than the largest
R” x RS1¥™ x Rms2xm gych that(z,, 0, Wy, W) € D,, Possible system dimension.
whereW; € R®*™ and Wy € R™*2*™, and the solution  |n Theorem 3.2 we assumed that the equilibrium point
(x(t), & (1), Wi(t), Wa(t)), t > 0, of the closed-loop sys- of (2) is globally asymptotically stable with(t) = u.. In
tem given by (2), (23), (25), (26), (28), and (29) is ultinlpte general, however, unlike linear nonnegative systems with
bounded for all(z(0),&.(0), W1(0), W»(0)) € D, with asymptotically stable plant dynamics, a given set point

) .
Wi(0) = Wi, (25) theorem thatf,,(-) and Gs(-) can be approximated over an
)

ultimate bound|y(t) — yq||? <&, t > T, where z. € R} for the nonlinear nonnegative dynamical system
) (2) may not be asy_ngrptotically stabilizable with a constant
v controlu(t) = u. € R, . However, if f(x) is homogeneous,
g > N eho T . . . NOR .
Amin (RP~1) cooperative; that is, the Jacobian mat?rg? is essentially
= ? nonnegative for all: € R, the Jacobian matri%
Amin (RP—1) a2 is irreducible for allz € Ki [4], and the zero solution
L x(t) = 0 of the undisturbed«(t) = 0) system (2) is
Mo (O s + Amax (03 Db2max | 2 (30)  9lobally asymptotically stable, then the set painte R}
FAmax Q1)1 max + (@2 )2 ] (30) safisfying (10), (11) is a unique equilibrium point with
S of n a3 (31) ult) = ue and is also asymptotically stable for afj € R,
Amin(RP~Y) " Apin(RP-1)’ [10]. This implies that the solution(t) = x. to (2) with
a1 2 [V/s1Wimax + (bs 4+ my/52th2max )] u(t) = u. is asymptotically stable for alty, € R, .
||PTVE(P — P)Bo|
+(v/$101max + (€7 + E;u*))||p1/230||7 (32) IV. NONLINEAR ADAPTIVE OUTPUT FEEDBACK
az 2 [3y/E1W1max + 2(bs + M/ 522max )’ CONTROL FORGENERAL ANESTHESIA
+(e7 + e5uM)]|| P2 Byl (33) To illustrate the application of our adaptive control frame

. A R . . work we consider a hypothetical model for the intravenous
u” = sup;sg [u(@), bs = Amax(Bs), Wimax, @ = 1,2, @are  anesthetic propofol. The pharmacokinetics of propofol are
norm bounds imposed oi;, and P € R"*" is a positive- described by a three-compartment model [11]. The model is

definite solution of the Lyapunov equation shown in Figure 1. The mass of the drug in the intravascular
blood volume as well as the highly perfused organs (organs
0=ATP+PA+R, R>0. (34) Wwith high ratios of perfusion to weight) such as the heart,

brain, kidney, and liver is denoted . The remainder of
Furthermoreu(t) >> 0, ¢ > 0, andx(t) >> 0, ¢t > 0, for  the drug in the body is assumed to reside in two peripheral
all zo € @i_ compartments, comprised of muscle and fat, and the masses

. . in these compartments are denotedsyand ;.
Remark 3.1:It is important to note that the existence b doyand zs
of a global neural network approximator for an uncertain, A mass balance of the three-state compartmental model
nonlinear map using the system outputs and inputs a¢flds

its delayed values (as in (17), (18)) cannot in general be . _

established. In the proof of Theorem 3.2, as is common #1(t) = —lae(c(t)) +an (c(t)) + az (e(t)lz1(?)

in the neural network literature, we assume that for a +aiz(c(t))w2(t) + ars(c(t))as(t) + u(t),
given arbitrarily large compact s€d. C R", there exists 21(0) = 219, t >0, (35)
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u = Continuous infusion \ u = Continuous infusion

ara(c)as az(¢)xy arz(c)as N as(c)zy
Central . Central o
Compartment 11 Compartment Compartment III Compartment 11 Compartment Compartment I1T
ag (c)r; ai3(c)zy as (c)z arz(c)as
| QeffC

ae(c)z; = Elimination ae(c)r, = Elimination

Fig. 1. Pharmacokinetic model for drug distribution duringsthesia

.i'Q(t) = a,gl(C(t)).’L'l (t) — alg(C(t))l'Q(t), j ]?% index
22(0) = 29, (36)
X1 t

jf'S (t) — as1 (C(t)) ( ) _ alg(c(t) T3 (t), Pharmacodynamics
ch(O) = 230 (37) Fig. 2. Combined pharmacokinetic/pharmaco-dynamic model

where ¢(t) = x1(t)/V., V. is the volume of the central _.

compartmentas, (¢) is the rate of transfer of drug from Bispectral Index (BIS), has been proposed as a measure
the central compartment to Compartmentdl,(c) is the Of anesthetic effect. This index quantifies the nonlinear
rate of transfer of drug from Compartment Il to the centrafélationships between the component frequencies in the
compartment,as; (c) is the rate of transfer of drug from €léctroencephalogram, as well as analyzing their phase and
the central compartment to Compartment lify3(c) is amplitude. The BIS signal is a nonlinear monotonically
the rate of transfer of drug from Compartment Il to thedecreasing function of the level of consciousness and is
central compartment,(c) is the rate of drug metabolism given by

and elimination (metabolism typically occurs in the liver) &

and u(t), t > 0, is the infusion rate of the anesthetic BIS(cesr) = BISy (1 — %ﬂv), (39)

drug propofol into the central compartment. In order to cerr +ECs50

formulate a physiologically realistic nonlinear model wenare BIS, denotes the baseline (awake state) value and
assume that the rate of transfer and the rate of metaboli convenotion is typically assigned a value of 1@Qg ’
are proportional to the cardiac output; that is, we assumeg he propofol concentration in micrograms/mililiter inet
azlgc; = A21Q(c), ar2(c) = A12Q(c), aai(¢) = A Q(c),  effect site compartment (brain), ECis the concentration at

aiz(c) = AQ(c), and ac(c) = A.Q(c), where Ais,  pait maximal effect and represents the patient's senitivi

Az, A, Ay, and A, are positive constants an@(c) g the drug, andy determir?es the degrepe of nonlinnglrity
representing the cardiac output given by in (39). Here, the effect site compartment is introduced as
QoCg, a correlate between the central compartment concentration

Qo)== (38)  and the central nervous system concentration. The effiect si

« b

Cgo + compartment concentration is related to the concentration
where the effect is related to (since ¢ is the presumed the central compartment by the first-order delay model
concentration in the highly perfused myocardiui®), > 0 . _ _
is a constant, ancg:)o > 0 is the drug concentration Cert(t) = acrr(c(t) — cerr(t)), cer(0) = c(0), 2 Ojr )
associated with 80% decrease in the cardiac output, an PR T :
a > 1 determines the steepness of this curve (that i B?rf%effit'?oﬂgcvs t'hsa? positive time constant. Assuming
how rapidly the cardiac output decreases with increasin -
drug concentration¢). Even though the transfer and loss t
coefficients A5, As1, A13, As1, and A, are nonnegative, Cett (1) :/ et g ge(s) ds. (41)
anda > 1, C5¢ > 0, and Qg > 0, these parameters can be 0
uncertain due to patient gender, weight, pre-existingadise |n reality, the effect site compartment equilibrates witke t
age, and concomitant medication. Hence, the need for neusentral compartment in a matter of a few minutes. The
adaptive control to regulate intravenous anestheticsnduri parametersi., ECs,, and~y are determined by data fitting
surgery is essential. and vary from patient to patient. BIS index values of 0

Even though propofol concentrations in the blood ar@nd 100 correspond, respectively, to an isoelectric EEG
known to be correlated with lack of purposeful responsivesignal and an EEG signal of a fully conscious patient;
ness (and presumably consciousness) [12], they cannot WBile the range between 40 and 60 indicates a moderate
measured in real-time during surgery. Furthermore, we afypnotic state. Figure 2 shows the combined pharmacoki-
more interested in drugffect(depth of hypnosis) rather than netic/pharmacodynamic model for propofol distribution.
drug concentration Hence, we consider a more realistic For set-point regulation defing(t) £ z(t) — z., where

model involving pharmacokinetics (drug concentration as ' 3 js the set point satisfying the equilibrium condition
a function of time) and pharmacodynamics (drug ef“fec%r (35)—(37) and (40) withry(t) = ey, 22(t) =

as a function of concentration) for control of anesthesia,. t) = oy, Cot = ECso, andu(t) _ uel’so thatf_(e)ei
Specifically, we use an electroencephalogram (EEG) sign (e)_f 6‘5('6) ef _(6) J;’ ,(6)]T is i\7enek’) ¢
as a measure of drug effect of anesthetic compounds effi\"/>/e21"/> Je3i=/» Jed 9 y

the brain [1]. Sinc? ekllectroenc?phalography provides-reaf,,(e) = —[ae(c) + az1(c) + azi(c)](er + o)
time monitoring of the central nervous system activity,

it can be used to quantify levels of consciousness and tFara(c)(e2 + o) + ars(c)(es + Tea)
hence is amenable for feedback (closed-loop) control in —[ae(ce) + azi(ce) + asi(ce)]wer

general anesthesia. Recently, a new EEG indicator, the +a12(ce)Ten + a13(Ce)Te3, (42)
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fea(e) azi(c)(er + xe1) — ara(c)(e2 + Te2)
(

—[az1(ce)zer — arz(ce)zesl, (43)
fes(e) = asi(c)(er + ze1) — ars(c)(es + Te3)
—[asi(ce)zer — ars(ce)wes], (44) £
feale) = aes(c— (es +ECs0)) — ac(ee — ECso), (45) £,

wherec. = z.,/V.. Next, linearizing f.(e) about0 and

X0 . i
- 50 / il
0

Concentrations [ug/mi]

computing the eigenvalues of the resulting Jacobian matri
it can be shown that, is asymptotically stable.

In the following numerical simulation we assuméS, =
100 and the target (desired) BIS valuB]S;..get, IS Set at
50. Now, using the adaptive output feedback controller

15 ) 3 15 2 3
Time [min] Time [min]

Fig. 3. Compartmental masses vEig. 4. Concentrations in the central
sus time

and effect site compartments versus
time

u(t) = max{0, @(¢)}, (46)

where
ﬂ(t) - _ lei(t)al(C(t»
bs + Wi (t)o2(¢(1))
¢(t) = [BIS(t — d), BIS(t — 2d), u; (t —

(47)

d),ui(t —2d)]7,

— 0
)

!
&
w

TR =
Time [min]

BIS Index [score]

Control signal [mg/min]

(48)
bs > 0, with update laws (25) and (26), whegg(t) € R?,

] ; _ § Fig. 5. Compensator states versBgy. 6. BIS Index versus time and
t > 0, is the solution to the estimator dynamics time control signal (infusion rate) versus
. time
fc (t) = Agc(t) + L(_BIS(t) - yc(t) + BIStarget)v
€(0) =&, >0, (49) REFERENCES
ye(t) = & (), (50)  [1] J. M. Bailey, W. M. Haddad, and T. Hayakawa, “Closed-lammtrol

where A € R?*2 and L € R?*!, it follows from Theo-
rem 3.2 that there exist positive constaat@and 7' such
that [BIS(t) — BIStarget| < €, t > T, for any (uncertain)
nonnegative values of the pharmacokinetic transfer arsl los
coefficients(A;2, Aa1, A13, As1, Ac) as well as any (uncer- 3]
tain) nonnegative coefficients Cso, and@y. It is important
to note that during actual surgery the BIS signal is obtained
directly from the EEG and not (39). Furthermore, since our
adaptive controller only requires the error sigdB(¢) — [4]
BIStarget, We do not require knowledge of the pharmaco-

(2]

dynamic parameters and EGg. For our simulation we [5]
assumel, = (0.228 ¢/kg)(M kg), where M = 70 kg is
the weight (mass) of the patienti;; Qy = 0.112 min—!, [6]
Ango = 0.055 minil, AngQ = 0.0419 minil, A13Q0 =
0.0033 min~!, A.Qo = 0.119 min™!, o = 3, andC50 = 7]

4 pg/mé [11]. Note that the parameter values farand

Cso probably exaggerate the effect of propofol on cardiacig]
output. They have been selected to accentuate nonlinearitg]
but they are not biologically unrealistic. Furthermore, to
illustrate the robustness of the proposed adaptive cdeitrol
we switch the pharmacodynamic parametersgEénd -, 10
respectively, from 5.6.9/m¢ and 2.39 to 7.2:.g/m¢ and 3.39 (10]
att = 15 min and back to 5.¢g/m¢ and 2.39 at = 30 min. 4
Here, we consider noncardiac surgery since cardiac surgery
often utilizes hypothermia which itself changes the BIS
signal. With A — (1) } L=[0,1]T, b =1,Q, = &
x107° g/mir?, Q2 = 2.0 x 107° g/min?, d = 0.005 min,

and initial conditionsz(0) = [0, 0, 0]T g, ce(0) = 0 g/m¥,
andé&.(0) = [0, 0]T. Figure 3 shows the masses of propofol

in the three compartments versus time. Figure 4 shows the
concentrations in the central and effect site compartments
versus time. Figure 5 shows the compensator states versus
time. Finally, Figure 6 shows the BIS index and the control
signal (propofol infusion rate) versus time.
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