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Abstract— The potential applications of neural adaptive
control for pharmacology in general, and anesthesia and
critical care unit medicine in particular, are clearly apparent.
Specifically, monitoring and controlling the depth of anesthesia
in surgery is of particular importance. Nonnegative and com-
partmental models provide a broad framework for biological
and physiological systems, including clinical pharmacology,
and are well suited for developing models for closed-loop
control of drug administration. In this paper, we develop
a neural adaptive output feedback control framework for
nonlinear uncertain nonnegative and compartmental systems.
The proposed framework is Lyapunov-based and guarantees
ultimate boundedness of the error signals. In addition, the
neural adaptive controller guarantees that the physical system
states remain in the nonnegative orthant of the state space.
Finally, the proposed approach is used to control the infusion
of the anesthetic drug propofol for maintaining a desired
constant level of depth of anesthesia for noncardiac surgery.

I. I NTRODUCTION

Neural networks offer an ideal framework for on-line
system identification and control of many complex uncertain
nonlinear dynamical systems. One of the key aspects of
neural networks is that a very rich class of continuous
nonlinear maps can be approximated from the collective
action of very simple, autonomous processing units in-
terconnected in simple ways. This massively parallel and
highly redundant processing architecture has resulted in
concrete accomplishments in pattern recognition, system
identification, and adaptive control.

Given the complexity, uncertainties, and nonlinearities
inherent in pharmacokinetic and pharmacodynamic models
needed to capture the wide effects of pharmacological
agents and anesthetics in the human body, neural networks
can provide an ideal framework for addressing adaptive con-
trol for clinical pharmacology [1]. Nonnegative and com-
partmental models provide a broad framework for biological
and physiological systems, including clinical pharmacol-
ogy, and are well suited for the problem of closed-loop
control of drug administration. Specifically, nonnegative
and compartmental dynamical systems [2] are composed of
homogeneous interconnected subsystems (or compartments)
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which exchange variable nonnegative quantities of material
with conservation laws describing transfer, accumulation,
and elimination between the compartments and the environ-
ment. It thus follows from physical considerations that the
state trajectory of such systems remains in the nonnegative
orthant of the state space for nonnegative initial conditions.

In this paper, we extend the results of [3] to nonnegative
and compartmental dynamical systems with applications to
the specific problem of automated anesthesia. Specifically,
we develop an output feedback neural network adaptive
controller that operates over a tapped delay line of available
input and output measurements. The neuro adaptive laws for
the neural network weights are constructed using a linear
observer for the nominal normal form system error dynam-
ics. The approach is applicable to general class of nonlinear
nonnegative dynamical systems without imposing a strict
positive real requirement on the transfer function of the
linear error normal form dynamics. Furthermore, since in
pharmacological applications involving active drug adminis-
tration control inputs as well as the system states need to be
nonnegative, the proposed neuro adaptive output feedback
controller also guarantees that the control signal remains
nonnegative. We emphasize that the proposed framework
addresses adaptiveoutput feedbackcontrollers for nonlinear
compartmental systems withunmodeled dynamicsof un-
known dimensionwhile guaranteing ultimate boundedness
of the error signals corresponding to the physical system
states as well as the neural network weighting gains. Output
feedback controllers are crucial in clinical pharmacology
since key physiological (state) variables cannot be measured
in practice.

II. M ATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
and some key results concerning linear and nonlinear non-
negative dynamical systems [2], [4] that are necessary for
developing the main results of this paper. Specifically, for
x ∈ R

n we write x ≥≥ 0 (resp.,x >> 0) to indicate that
every component ofx is nonnegative (resp., positive). In this
case we say thatx is nonnegativeor positive, respectively.
Likewise, A ∈ R

n×m is nonnegativeor positive if every
entry ofA is nonnegative or positive, respectively, which is
written asA ≥≥ 0 or A >> 0, respectively. LetR

n

+ and
R

n
+ denote the nonnegative and positive orthants ofR

n; that
is, if x ∈ R

n, then x ∈ R
n

+ and x ∈ R
n
+ are equivalent,



respectively, tox ≥≥ 0 andx >> 0. Furthermore, we write
(·)T to denote transpose, tr(·) for the trace operator,λmin(·)
to denote the minimum eigenvalue of a Hermitian matrix,
‖ · ‖ for a Euclidean vector norm,‖ · ‖F for the Frobenius
matrix norm, andV ′(x) for the Fŕechet derivative ofV atx.
Finally, M ⊗N denotes the Kronecker product of matrices
M and N . The following definition introduces the notion
of a nonnegative (resp., positive) function.

Definition 2.1: Let T > 0. A real functionu : [0, T ] →
R

m is a nonnegative(resp.,positive) function if u(t) ≥≥ 0
(resp.,u(t) >> 0) on the interval[0, T ].

The next definition introduces the notions of essentially
nonnegative matrices and compartmental matrices.

Definition 2.2 ( [2]): Let A ∈ R
n×n. A is essentially

nonnegative if A(i,j) ≥ 0, i, j = 1, · · · , n, i 6= j.
A is compartmentalif A is essentially nonnegative and
∑n

i=1 A(i,j) ≤ 0, j = 1, · · · , n.

The following definition introduces the notion of essen-
tially nonnegative vector fields [2].

Definition 2.3: Let f = [f1, · · · , fn]T : D → R
n, where

D is an open subset ofRn that containsR
n

+. Then f is
essentially nonnegativeif fi(x) ≥ 0, for all i = 1, . . . , n,
and x ∈ R

n

+ such thatxi = 0, wherexi denotes theith
element ofx.

In this paper we consider controlled nonlinear dynamical
systems of the form

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (1)

wherex(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, f : R
n → R

n

is locally Lipschitz continuous and satisfiesf(0) = 0, and
G : R

n → R
n×m.

The following definition and proposition are needed for
the main results of the paper.

Definition 2.4: The nonlinear dynamical system given by
(1) is nonnegativeif for every x(0) ∈ R

n

+ andu(t) ≥≥ 0,
t ≥ 0, the solutionx(t), t ≥ 0, to (1) is nonnegative.

III. N EURAL ADAPTIVE OUTPUT FEEDBACK CONTROL

FOR NONLINEAR NONNEGATIVE UNCERTAIN SYSTEMS

In this section we consider the problem of characterizing
neural adaptive dynamic output feedback control laws for
nonlinear nonnegative and compartmental uncertain dynam-
ical systems to achieveset-pointregulation in the nonneg-
ative orthant. Specifically, consider the controlled square
nonlinear uncertain dynamical systemG given by

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (2)
y(t) = h(x(t)), (3)

wherex(t) ∈ R
n, t ≥ 0, is the state vector,u(t) ∈ R

m,
t ≥ 0, is the control input,y(t) ∈ R

m, t ≥ 0, is the
system output,f : R

n → R
n is essentially nonnegative

but otherwise unknown and satisfiesf(0) = 0, G : R
n →

R
n×m is an unknown nonnegative input matrix function,

and h : R
n → R

m is a nonnegative function and satisfies
h(0) = 0. We assume thatf(·), G(·), andh(·) are smooth
(i.e., C∞ mappings) and the control inputu(·) in (2) is
restricted to the class ofadmissible controlsconsisting of
measurable functions such thatu(t) ∈ R

m, t ≥ 0.

As discussed in the Introduction, control (source) inputs
of drug delivery systems for physiological and pharmaco-
logical processes are usually constrained to be nonnegative
as are the system states. Hence, in this paper we develop
neuro adaptive dynamic output feedback control laws for
essentially nonnegative systems with nonnegative control
inputs. Specifically, for a given desired set pointyd ∈
R

m

+ and for a givenε > 0, our aim is to design a
nonnegative control inputu(t), t ≥ 0, predicated on the
system measurementy(t), t ≥ 0, such that‖y(t)−yd‖ < ε
for all t ≥ T , whereT ∈ [0,∞), andx(t) ≥≥ 0, t ≥ 0,
andu(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R

n

+.

In this paper, we assume that for the nonlinear dynamical
system (2), (3), the conditions for the existence of a globally
defined diffeomorphism transforming (2), (3) into normal
form [5], [6] are satisfied so that there exists a global
diffeomorphismT : R

n → R
n, a C∞ function fξ : R

r ×
R

n−r → R
r, and a C∞ function fz : R

r × R
n−r → R

n−r

such that, in the coordinates
[

ξ
z

]

, T (x), (4)

where ξ , [y1, ẏ1, · · · , y
(r1−2)
1 , · · · , ym, ẏm, · · · , y

(rm−2)
m ;

y
(r1−1)
1 , · · · , y

(rm−1)
m ] ∈ R

r, z ∈ R
n−r, andr , r1 + · · ·+

rm is the (vector) relative degree ofG, G given by (2), (3)
is equivalent to

ξ̇(t) = fξ(ξ(t), z(t)) + Gξ(ξ(t), z(t))u(t), ξ(0) = ξ0,
t ≥ 0, (5)

ż(t) = fz(ξ(t), z(t)), z(0) = z0, (6)
y(t) = Cξ(t), (7)

with appropriate initial conditionsξ0 ∈ R
r andz0 ∈ R

n−r,
where

fξ(ξ, z) = Aξ + f̃u(ξ, z), Gξ(ξ, z) =

[

0(n−m)×m

Gs(x̃)

]

, (8)

A =

[

A0

Â

]

, f̃u(ξ, z) =

[

0(n−m)×1

fu(x̃)

]

, (9)

x̃ , [ξT, zT]T, A0 ∈ R
(r−m)×r is a known matrix of zeros

and ones capturing the multivariable controllable canonical
form representation [7],Â ∈ R

m×r is such thatA is
asymptotically stable,fu : R

n → R
m is an unknown

function and satisfiesfu(0) = 0, C ∈ R
m×r is a known

matrix of zeros and ones capturing the system output, and
Gs : R

n → R
m×m is an unknown matrix function such that

det Gs(x̃) 6= 0, x̃ ∈ R
n. Furthermore, we assume that for a

given yd ∈ R
m

+ there existze ∈ R
n−r and ue ∈ R

m

+ such
that xe , T −1(x̃e) ≥≥ 0 and

0 = fξ(ξe, ze) + Gξ(ξe, ze)ue, (10)
0 = fz(ξe, ze), (11)

where x̃e , [ξT
e , zT

e ]T and ξe is given with yi = ydi, i =

1, · · · ,m, and ẏi = · · · = y
(ri−1)
i = 0, i = 1, · · · ,m.

In addition, we assume that (6) is input-to-state stable at
z(t) ≡ ze with ξ(t) − ξe viewed as the input; that is, there
exist a classKL functionη(·, ·) and a classK functionγ(·)
such that

‖z(t) − ze‖ ≤ η(‖z0 − ze‖, t)

+γ

(

sup
0≤τ≤t

‖ξ(τ) − ξe‖

)

, t ≥ 0. (12)



Note that(ξe, ze) ∈ R
r × R

n−r is an equilibrium point of
(5), (6) if and only if there existsue ∈ R

m

+ such that (10),
(11) hold. Furthermore, we assume that, for a givenε∗ > 0,
the functionsfu(T (x)) − fu(T (xe)) − Gs(T (xe))ue and
Gs(T (x)) − Bs, whereBs ∈ R

m×m, can be approximated
over a compact setDc ⊂ R

n

+ by a linear in the parameters
neural network up to a desired accuracy so that there exist
ε1 : R

n → R
m andε2 : R

n → R
m×m such that‖ε1(x)‖ <

ε∗ and‖ε2(x)‖F < ε∗, x ∈ Dc, and

fu(T (x)) − fu(T (xe)) − Gs(T (xe))ue

= WT
1 σ1(x) + ε1(x), x ∈ Dc, (13)

Gs(T (x)) − Bs = WT
2 [Im ⊗ σ2(x)]

+ε2(x), x ∈ Dc, (14)

whereW1 ∈ R
s1×m and W2 ∈ R

ms2×m are optimalun-
known(constant) weights that minimize the approximation
errors overDc, σ1 : R

n → R
s1 and σ2 : R

n → R
s2 are

sets of basis functions such that each component ofσ1(·)
and σ2(·) takes values between 0 and 1, andε1(·) and
ε2(·) are the modeling errors. Sincefu(·) and Gs(·) are
continuous, we can chooseσ1(·) and σ2(·) from a linear
spaceX of continuous functions that forms an algebra and
separates points inDc. In this case, it follows from the
Stone-Weierstrass theorem [8, p. 212] thatX is a dense
subset of the set of continuous functions onDc. Now, as is
the case in the standard neuro adaptive control literature,we
can construct the signaluad = F (Ŵ1, Ŵ2, σ1(x), σ2(x))
involving the estimates of the optimal weights and basis
functions as our adaptive control signal. However, in order
to develop an output feedback neural network, we use
the recent approach given in [9] for reconstructing the
system states via the system delayed inputs and outputs.
Specifically, we use amemory unitas a particular form of
a tapped delay line that takes a scalar time series input and
provides a vector output consisting of the present values
of the system outputs and system inputs and their delayed
values. As shown in [9], such a memory unit can be used
to characterize an equivalent input-output representation for
(2), (3) in the sense of guaranteeing the existence of a
function g(·) and a numberd such that the future outputs
of (2), (3) can be determined based on a number of past
observations of the inputs and outputs of (2), (3). The
following theorem is given in [9].

Theorem 3.1 ( [9]):Consider the nonlinear dynamical
systemG given by (2), (3). Assume that the state vector
x(t), t ≥ 0, of (2), (3) evolves onBr(0) , {x ∈ R

n :
‖x‖ ≤ r} and G is observable. Furthermore, assume that
the system outputy(t), t ≥ 0, and its derivatives up to
the order(n − 1) are bounded for allt ≥ 0. Then, given
an arbitraryε∗ > 0, there exists a set of bounded weights
W and a positive scalard > 0 such that any continuous
function g(x, u) : R

n × R
m → R

p can be approximated
over the compact setBr(0) by a linear in the parameters
neural network of the form

g(x(t), u(t)) = WTσ(ζ(t)) + ε(x(t), ζ(t)),

‖ε(x(t), ζ(t))‖ ≤ ε∗, t ≥ 0, (15)

wherex(t), t ≥ 0 is the solution to (2),

ζ(t) , [y1(t), y1(t − d), · · · , y1(t − (n − 1)d), · · · ,

ym(t), ym(t − d), · · · , ym(t − (n − 1)d);

u1(t), u1(t − d), · · · , u1(t − (n − r1 − 1)d),

· · · , um(t), um(t − d), · · · ,

um(t − (n − rm − 1)d)]T, t ≥ 0, (16)

‖ζ(t)‖ ≤ ζ∗, t ≥ 0, andζ∗ > 0 is a uniform bound ofζ(·)
overBr(0).

In light of the above theorem, it follows that if the
dynamical systemG is observable and its state trajectory
x(t), t ≥ 0, evolves onDc, then there existε1 : R

n ×
R

2nm−r → R
m andε2 : R

n×R
2nm−r → R

m×m such that
‖ε1(x(t), ζ(t))‖ < ε∗ and ‖ε2(x(t), ζ(t))‖F < ε∗, t ≥ 0,
and, for allt ≥ 0,

fu(T (x(t))) − fu(T (xe)) − Gs(T (xe))ue

= WT
1 σ1(ζ(t)) + ε1(x(t), ζ(t)), (17)

Gs(T (x(t))) − Bs = WT
2 [Im ⊗ σ2(ζ(t))]

+ε2(x(t), ζ(t)). (18)

For the statement of the next result, define the projection
operator Proj(W̃ , Y ) given by

Proj(W̃ , Y ) ,











Y, if µ(W̃ ) < 0,

Y, if µ(W̃ ) ≥ 0 andµ′(W̃ )Y ≤ 0,

Y − µ′T(W̃ )µ′(W̃ )Y

µ′(W̃ )µ′T(W̃ )
µ(W̃ ), otherwise,

(19)
whereW̃ ∈ R

s×m, Y ∈ R
n×m, µ(W̃ ) ,

tr W̃TW̃−w̃2

max

ε
W̃

,

w̃max ∈ R is the norm bound imposed oñW , andεW̃ > 0.
Note that, given the matrices̃W ∈ R

s×m andY ∈ R
s×m,

it follows that

tr[(W̃ − W )T(Proj(W̃ , Y ) − Y )]

=

n
∑

i=1

[coli(W̃ − W )]T(Proj(coli(W̃ ), coli(Y ))

−coli(Y ))

≤ 0, (20)

wherecoli(X) denotes theith column of the matrixX.

Theorem 3.2:Consider the nonlinear uncertain dynam-
ical systemG given by (2) and (3) wheref : R

n →
R

n is essentially nonnegative andG : R
n → R

n×m is
nonnegative. For a givenyd ∈ R

m

+ assume there exist
nonnegative vectorsxe ∈ R

n

+ andue ∈ R
m

+ such that

0 = f(xe) + G(xe)ue, (21)
yd = h(xe). (22)

Furthermore, assume that the equilibrium pointxe of (2) is
globally asymptotically stable withu(t) ≡ ue. In addition,
assume that there exists a global diffeomorphismT : R

n →
R

n such thatG can be transformed into the normal form
given by (5) and (6), and (6) is input-to-state stable atze
with ξ(t) − ξe viewed as the input. Finally, letQ1, Q2 ∈
R

m×m be positive definite. Then the neural adaptive output
feedback control law

u(t) =

{

û(t), if û(t) ≥≥ 0,
0, otherwise,

(23)

where

û(t)=−
(

Bs + ŴT
2 (t)[Im ⊗ σ2(ζ(t))]

)−1

ŴT
1 (t)σ1(ζ(t)),

(24)



Bs ∈ R
m×m is positive definite,ζ(t), t ≥ 0, is given by

(16), Ŵ1(t) ∈ R
s1×m, t ≥ 0, andŴ2(t) ∈ R

ms2×m, t ≥ 0,
with update laws

˙̂
W1(t) = Q1Proj(Ŵ1(t), σ1(ζ(t))ξT

c (t)P̃B0),

Ŵ1(0) = Ŵ10, (25)
˙̂

W2(t) = Q2Proj(Ŵ2(t), [Im ⊗ σ2(ζ(t))]u(t)ξT
c (t)P̃B0),

Ŵ2(0) = Ŵ20, (26)

where P̃ ∈ R
r×r is a positive-definite solution of the

Lyapunov equation

0 = (A − LC)TP̃ + P̃ (A − LC) + R̃, R̃ > 0, (27)

andξc(t), t ≥ 0, is the solution to the estimator dynamics

ξ̇c(t) = Aξc(t) + L(y(t) − yc(t) − yd), ξc(0) = ξc0,

t ≥ 0, (28)
yc(t) = Cξc(t), (29)

where ξc(t) ∈ R
r, t ≥ 0, A ∈ R

r×r is asymptotically
stable,L ∈ R

r×m is such thatA − LC is asymptotically
stable, andB0 , [0m×(r−m), Im]T, guarantees that there
exists a compact positively invariant setDα ⊂ R

n ×
R

r × R
s1×m × R

ms2×m such that(xe, 0,W1,W2) ∈ Dα,
whereW1 ∈ R

s1×m andW2 ∈ R
ms2×m, and the solution

(x(t), ξc(t), Ŵ1(t), Ŵ2(t)), t ≥ 0, of the closed-loop sys-
tem given by (2), (23), (25), (26), (28), and (29) is ultimately
bounded for all(x(0), ξc(0), Ŵ1(0), Ŵ2(0)) ∈ Dα with
ultimate bound‖y(t) − yd‖

2 < ε, t ≥ T , where

ε >

[

(
√

ν

λmin(RP−1)
+ α1

)

2

+

(

√

ν

λmin(R̃P̃−1)
+ α2

)2

+λmax(Q
−1

1 )ŵ2

1max + λmax(Q
−1

2 )ŵ2

2max

] 1

2

(30)

ν ,
α2

1

λmin(RP−1)
+

α2

2

λmin(R̃P̃−1)
, (31)

α1 , [
√

s1ŵ1max + (bs + m
√

s2ŵ2max)u
∗]

·‖P−1/2(P − P̃ )B0‖
+(

√
s1ŵ1max + (ε∗1 + ε

∗

2u
∗))‖P 1/2

B0‖, (32)

α2 , [3
√

s1ŵ1max + 2(bs + m
√

s2ŵ2max)u
∗

+(ε∗1 + ε
∗

2u
∗)]‖P̃ 1/2

B0‖, (33)

u∗ , supt≥0 ‖u(t)‖, bs , λmax(Bs), ŵimax, i = 1, 2, are
norm bounds imposed on̂Wi, andP ∈ R

r×r is a positive-
definite solution of the Lyapunov equation

0 = ATP + PA + R, R > 0. (34)

Furthermore,u(t) ≥≥ 0, t ≥ 0, andx(t) ≥≥ 0, t ≥ 0, for
all x0 ∈ R

n

+.

Remark 3.1:It is important to note that the existence
of a global neural network approximator for an uncertain
nonlinear map using the system outputs and inputs and
its delayed values (as in (17), (18)) cannot in general be
established. In the proof of Theorem 3.2, as is common
in the neural network literature, we assume that for a
given arbitrarily large compact setDc ⊂ R

n, there exists

an approximator for the unknown nonlinear map up to a
desired accuracy. This assumption ensures that in the error
spaceD̃e there exists at least one Lyapunov level set such
that D̃η ⊂ D̃α. In the case wherefu(·) and Gs(·) are
continuous onR

n, it follows from the Stone-Weierstrass
theorem thatfu(·) andGs(·) can be approximated over an
arbitrarily large compact setDc in the sense of (13) and
(14) and hence (17) and (18) hold with sufficiently smalld.
In addition, we assume that̂W2(0) is sufficiently close to
the optimal weightW2 so thatBs + Ŵ2(t)[Im ⊗ σ2(ζ(t))]
is nonsingular for allt ≥ 0.

Remark 3.2:Implementation of (24) requires a fixed-
point iteration at each integration step; that is, the controller
contains an algebraic constraint onu. For each choice
of σ1(·) and σ2(·) this equation must be examined for
solvability in terms of u. It is more practical to avoid
this iteration by using one-step delayed values ofu in
calculatingû. Implementations using both approaches result
in imperceptible differences in our numerical studies.

Remark 3.3:In the case of systems of unknown di-
mension but with known relative degree, Theorem 3.2
applies with a slight modification to the input vector of
the neural network; that is,n in (16) should be replaced
by a sufficiently large value that is greater than the largest
possible system dimension.

In Theorem 3.2 we assumed that the equilibrium pointxe
of (2) is globally asymptotically stable withu(t) ≡ ue. In
general, however, unlike linear nonnegative systems with
asymptotically stable plant dynamics, a given set point
xe ∈ R

n
+ for the nonlinear nonnegative dynamical system

(2) may not be asymptotically stabilizable with a constant
controlu(t) ≡ ue ∈ R

m

+ . However, iff(x) is homogeneous,
cooperative; that is, the Jacobian matrix∂f(x)

∂x
is essentially

nonnegative for allx ∈ R
n

+, the Jacobian matrix∂f(x)
∂x

is irreducible for allx ∈ R
n

+ [4], and the zero solution
x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system (2) is
globally asymptotically stable, then the set pointxe ∈ R

n
+

satisfying (10), (11) is a unique equilibrium point with
u(t) ≡ ue and is also asymptotically stable for allx0 ∈ R

n

+
[10]. This implies that the solutionx(t) ≡ xe to (2) with
u(t) ≡ ue is asymptotically stable for allx0 ∈ R

n

+.

IV. N ONLINEAR ADAPTIVE OUTPUT FEEDBACK

CONTROL FORGENERAL ANESTHESIA

To illustrate the application of our adaptive control frame-
work we consider a hypothetical model for the intravenous
anesthetic propofol. The pharmacokinetics of propofol are
described by a three-compartment model [11]. The model is
shown in Figure 1. The mass of the drug in the intravascular
blood volume as well as the highly perfused organs (organs
with high ratios of perfusion to weight) such as the heart,
brain, kidney, and liver is denoted byx1. The remainder of
the drug in the body is assumed to reside in two peripheral
compartments, comprised of muscle and fat, and the masses
in these compartments are denoted byx2 andx3.

A mass balance of the three-state compartmental model
yields

ẋ1(t) = −[ae(c(t)) + a21(c(t)) + a31(c(t))]x1(t)

+a12(c(t))x2(t) + a13(c(t))x3(t) + u(t),

x1(0) = x10, t ≥ 0, (35)









 

u ≡ Continuous infusion

ae(c)x1 ≡ Elimination

Compartment II
Central

Compartment
Compartment III

a12(c)x2

a21(c)x1

a31(c)x1

a13(c)x3

Fig. 1. Pharmacokinetic model for drug distribution during anesthesia

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t),

x2(0) = x20, (36)
ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t),

x3(0) = x30, (37)

where c(t) = x1(t)/Vc, Vc is the volume of the central
compartment,a21(c) is the rate of transfer of drug from
the central compartment to Compartment II,a12(c) is the
rate of transfer of drug from Compartment II to the central
compartment,a31(c) is the rate of transfer of drug from
the central compartment to Compartment III,a13(c) is
the rate of transfer of drug from Compartment III to the
central compartment,ae(c) is the rate of drug metabolism
and elimination (metabolism typically occurs in the liver),
and u(t), t ≥ 0, is the infusion rate of the anesthetic
drug propofol into the central compartment. In order to
formulate a physiologically realistic nonlinear model we
assume that the rate of transfer and the rate of metabolism
are proportional to the cardiac output; that is, we assume
a21(c) = A21Q(c), a12(c) = A12Q(c), a31(c) = A31Q(c),
a13(c) = A13Q(c), and ae(c) = AeQ(c), where A12,
A21, A13, A31, and Ae are positive constants andQ(c)
representing the cardiac output given by

Q(c) =
Q0C

α
50

Cα
50 + cα

, (38)

where the effect is related toc (since c is the presumed
concentration in the highly perfused myocardium),Q0 > 0
is a constant, andC50 > 0 is the drug concentration
associated with a50% decrease in the cardiac output, and
α > 1 determines the steepness of this curve (that is,
how rapidly the cardiac output decreases with increasing
drug concentration,c). Even though the transfer and loss
coefficientsA12, A21, A13, A31, and Ae are nonnegative,
andα > 1, C50 > 0, andQ0 > 0, these parameters can be
uncertain due to patient gender, weight, pre-existing disease,
age, and concomitant medication. Hence, the need for neuro
adaptive control to regulate intravenous anesthetics during
surgery is essential.

Even though propofol concentrations in the blood are
known to be correlated with lack of purposeful responsive-
ness (and presumably consciousness) [12], they cannot be
measured in real-time during surgery. Furthermore, we are
more interested in drugeffect(depth of hypnosis) rather than
drug concentration. Hence, we consider a more realistic
model involving pharmacokinetics (drug concentration as
a function of time) and pharmacodynamics (drug effect
as a function of concentration) for control of anesthesia.
Specifically, we use an electroencephalogram (EEG) signal
as a measure of drug effect of anesthetic compounds on
the brain [1]. Since electroencephalography provides real-
time monitoring of the central nervous system activity,
it can be used to quantify levels of consciousness and
hence is amenable for feedback (closed-loop) control in
general anesthesia. Recently, a new EEG indicator, the
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ceff

Pharmacodynamics
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Fig. 2. Combined pharmacokinetic/pharmaco-dynamic model

Bispectral Index (BIS), has been proposed as a measure
of anesthetic effect. This index quantifies the nonlinear
relationships between the component frequencies in the
electroencephalogram, as well as analyzing their phase and
amplitude. The BIS signal is a nonlinear monotonically
decreasing function of the level of consciousness and is
given by

BIS(ceff) = BIS0

(

1 −
cγ
eff

cγ
eff + ECγ

50

)

, (39)

whereBIS0 denotes the baseline (awake state) value and,
by convention, is typically assigned a value of 100,ceff
is the propofol concentration in micrograms/mililiter in the
effect site compartment (brain), EC50 is the concentration at
half maximal effect and represents the patient’s sensitivity
to the drug, andγ determines the degree of nonlinearity
in (39). Here, the effect site compartment is introduced as
a correlate between the central compartment concentration
and the central nervous system concentration. The effect site
compartment concentration is related to the concentrationin
the central compartment by the first-order delay model

ċeff(t) = aeff(c(t) − ceff(t)), ceff(0) = c(0), t ≥ 0,
(40)

whereaeff in min−1 is a positive time constant. Assuming
c(0) = 0, it follows that

ceff(t) =

∫ t

0

e−aeff (t−s)aeffc(s) ds. (41)

In reality, the effect site compartment equilibrates with the
central compartment in a matter of a few minutes. The
parametersaeff , EC50, andγ are determined by data fitting
and vary from patient to patient. BIS index values of 0
and 100 correspond, respectively, to an isoelectric EEG
signal and an EEG signal of a fully conscious patient;
while the range between 40 and 60 indicates a moderate
hypnotic state. Figure 2 shows the combined pharmacoki-
netic/pharmacodynamic model for propofol distribution.

For set-point regulation definee(t) , x(t) − xe, where
xe ∈ R

3 is the set point satisfying the equilibrium condition
for (35)–(37) and (40) withx1(t) ≡ xe1, x2(t) ≡ xe2,
x3(t) ≡ xe3, ceff ≡ EC50, andu(t) ≡ ue, so thatfe(e) =
[fe1(e), fe2(e), fe3(e), fe4(e)]

T is given by

fe1(e) = −[ae(c) + a21(c) + a31(c)](e1 + xe1)

+a12(c)(e2 + xe2) + a13(c)(e3 + xe3)

−[ae(ce) + a21(ce) + a31(ce)]xe1

+a12(ce)xe2 + a13(ce)xe3, (42)



fe2(e) = a21(c)(e1 + xe1) − a12(c)(e2 + xe2)

−[a21(ce)xe1 − a12(ce)xe2], (43)
fe3(e) = a31(c)(e1 + xe1) − a13(c)(e3 + xe3)

−[a31(ce)xe1 − a13(ce)xe3], (44)
fe4(e) = aeff(c − (e4 + EC50)) − aeff(ee − EC50), (45)

where ce , xe1/Vc. Next, linearizingfe(e) about 0 and
computing the eigenvalues of the resulting Jacobian matrix,
it can be shown thatxe is asymptotically stable.

In the following numerical simulation we assumeBIS0 =
100 and the target (desired) BIS value,BIStarget, is set at
50. Now, using the adaptive output feedback controller

u(t) = max{0, û(t)}, (46)

where

û(t) = −
ŴT

1 (t)σ1(ζ(t))

bs + ŴT
2 (t)σ2(ζ(t))

, (47)

ζ(t) = [BIS(t − d),BIS(t − 2d), u1(t − d), u1(t − 2d)]T,
(48)

bs > 0, with update laws (25) and (26), whereξc(t) ∈ R
2,

t ≥ 0, is the solution to the estimator dynamics

ξ̇c(t) = Aξc(t) + L(−BIS(t) − yc(t) + BIStarget),

ξc(0) = ξc0, t ≥ 0, (49)
yc(t) = ξc(t), (50)

where A ∈ R
2×2 and L ∈ R

2×1, it follows from Theo-
rem 3.2 that there exist positive constantsε and T such
that |BIS(t) − BIStarget| ≤ ε, t ≥ T , for any (uncertain)
nonnegative values of the pharmacokinetic transfer and loss
coefficients(A12, A21, A13, A31, Ae) as well as any (uncer-
tain) nonnegative coefficientsα, C50, andQ0. It is important
to note that during actual surgery the BIS signal is obtained
directly from the EEG and not (39). Furthermore, since our
adaptive controller only requires the error signalBIS(t) −
BIStarget, we do not require knowledge of the pharmaco-
dynamic parametersγ and EC50. For our simulation we
assumeVc = (0.228 ℓ/kg)(M kg), whereM = 70 kg is
the weight (mass) of the patient,A21Q0 = 0.112 min−1,
A12Q0 = 0.055 min−1, A31Q0 = 0.0419 min−1, A13Q0 =
0.0033 min−1, AeQ0 = 0.119 min−1, α = 3, andC50 =
4 µg/mℓ [11]. Note that the parameter values forα and
C50 probably exaggerate the effect of propofol on cardiac
output. They have been selected to accentuate nonlinearity
but they are not biologically unrealistic. Furthermore, to
illustrate the robustness of the proposed adaptive controller
we switch the pharmacodynamic parameters EC50 and γ,
respectively, from 5.6µg/mℓ and 2.39 to 7.2µg/mℓ and 3.39
at t = 15 min and back to 5.6µg/mℓ and 2.39 att = 30 min.
Here, we consider noncardiac surgery since cardiac surgery
often utilizes hypothermia which itself changes the BIS

signal. WithA =

[

0 1
−1 −1

]

, L = [0, 1]T, bs = 1, Q1 =

×10−5 g/min2, Q2 = 2.0 × 10−5 g/min2, d = 0.005 min,
and initial conditionsx(0) = [0, 0, 0]T g, ceff(0) = 0 g/mℓ,
andξc(0) = [0, 0]T. Figure 3 shows the masses of propofol
in the three compartments versus time. Figure 4 shows the
concentrations in the central and effect site compartments
versus time. Figure 5 shows the compensator states versus
time. Finally, Figure 6 shows the BIS index and the control
signal (propofol infusion rate) versus time.
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