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Abstract— In this paper, we develop a direct adaptive control [16|] to the case of nonnegative and compartmental dynam-
framework for uncertain linear nonnegative and compartmen-  ical systems with unknown system time delay. Specifically,
tal dynamical systems with unknown time delay. The specific We develop a Lyapunov-Krasovskii-based direct adaptive
focus of the paper is on compartmental pharmacokinetic I(i:rcl)ggronggfgyr?rnor?rgegg%e;{vaentgr%ngosﬁ?ggr?méa?glug?/trl]%r:nfical
m;ﬂghsla?nsv;hglervgﬁ))pl|c:t|f " 5?1Oc\j/[lﬁaggg\s’%ri{’bzgzt(jerré?r'eg systems with unknown time delay. The specific focus of the
particutar, p a Lyap , : paper is on pharmacokinetic models and their applications
adaptive control framework for guaranteeing set-point regu- g drug delivery systems. In particular, we develop direct
lation of the closed-loop system in the nonnegative orthant in  adaptive controllers with nonnegative control inputs ad we
the presence of unknown system time delay. The framework as adaptive controllers with the absence of such a restmicti
additionally guarantees nonnegativity of the control signal. Finally, we demonstrate the framework on a drug delivery
Finally, we demonstrate the framework on a drug delivery model for general anesthesia that involves system time
model for general anesthesia involving system time delays. ~ delays.

[I. MATHEMATICAL PRELIMINARIES
. INTRODUCTION . . . . —_
In this section we introduce notation, several definitions,
Nonnegative and compartmental models play a key rond some key results concerning linear nonnegative dynam-
in the understanding of many processes in biological acr)igal systems with time delay [17], [18] that are necessary fo
medical sciences [1-9]. Compartmental systems are mo@eveloping the main results of this paSJer. Specifically, for
eled by interconnected subsystems (or compartments) whiehe R™ we write z >> 0 (resp.,z >> 0) to indicate that.
exchange variable nonnegative quantities of material witBVery component of is nonnegative (resp., positive). In this
conservation laws describing transfer, accumulation, arfeg@se we say that is nonnegativeor EOSIUVG respectively.
elimination between compartments and the environmentikewise, A € R™*™ is nonnegative or positiveif every
In many compartmental pharmacokinetic system modelsntry of A is nonnegative or positive, respectively, which is
transfers between compartments are assumed to be instamitten asA >> 0 or A >> 0, respectively. Furthermore,
taneous; that is, the model does not account for material for A € R™*™ we write A > 0 (resp.,A > 0) to indicate
transit. Even though this is a valid assumption for certaithat A is a nonnegative-definite (resp., positive-definite)
biological and physiological systems, it is not true in geNmatrix. LetR’; andR" denote the nonnegative and positive
eral; especially in pharmacokinetic and pharmacodynamic o T+ n =n n
models. For example, if a bolus of drug is injected intdrthants ofR™; thatis, ifz € R”, thenz € R andz € R}
the circulation and we seek its concentration level in thare equivalent, respectively, to >> 0 andz >> 0. The
extracellular and intercellular space of some organ, thefellowing definition introduces the notion of a nonnegative
elxﬁtsla tirr]ne lag before it is detected in that organ [6], ,[10]]Sresp., positive) function.
. In this case, assuming instantaneous mass transferyafini : ; )
etween compartments will )%eld erroneous models. Henc ”P?;'g'gggnzélék\?&rgg O'oéitri\e;gl fflhjnncct%g)nni? J?’ ZL_(;
to accurately describe the distribution of pharmacoldgica@ 9 PP u(t) 2=
agents in the human body, it is necessary to include in an§eSP-u(t) >> 0) on the interval0, 1.
mathematical compartmental pharmacokinetic model someThe next definition introduces the notion of essentially
|Rf0rmat|on of the past system staltes. In thlsfcas_e the statenonnegative matrices.
the system at any giventime involvepiece of trajectories o . .
in thgspace of ContinuoUS functions defined on an interval Definition 2.2 ( [19]): Let A € R™*". A is essentially
in the nonnegative orthant. This of course leads to (infinitdlonnegativef A j) >0, 4,5 =1,---,n, i # j.
dimensional) delay dynamical systems [12-15]. In this paper, we consider a controlled linear time-delay
In a recent paper [16], the authors present a direct adagynamical systeng of the form
tive control framework for set-point regulation of lineaym .
negative and compartmental systems with applications té(t) = Az(t) + Aaz(t —7) + Bu(t), x(0) =n(0),
clinical pharmacology. In this paper, we extend the resflts —-7<6<0, t>0, @1

This research was supported in part by the National Scieanadation 1in this paper it is important to distinguish between a squareegative
under Grant ECS-0133038 and the Air Force Office of Scierflfisearch (resp., positive) matrix and a nonnegative-definite (rgspsjtive-definite)
under Grant F49620-0-03-0178. matrix.
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wherez(t) € R”, u(t) € R™, t > 0, A € R™*", 44 €  Aq given by

R*»*" B e R"™™ r>0,n()€C=C(-7,0,R")is a n

continuous vector valued function specifying the initielte A = diag[ Z L —a1s, - —am], ()
of the system, and([—, 0], R") denotes a Banach space of = Gaslm 2 41, A2, — ),
continuous functions mapping the inter\{aJT,Ol\J into R™ j=1

with the topology of uniform convergence. Note that the 0, i=j,

state of (1) at time is the piece of trajectoriest between A _ 0, i£landj#1 ®)
t — 7 andt, or, equivalently, theelementz; in the space d(ig) = v ! a7y 75

of continuous functions defined on the interyatr, 0] and aij, otherwise

taking Avalues inR"; that is, z; € C([—7,0],R"), where \yhere the transfer coefficients;, i,5 = 1,---,n, and the
THED s o oS S bRt e 1 2 loss coeficienty e posive
—r,0], the uniform norm\||_xt\|| — SWpper ”‘f?(t + o), reé:lﬂrl]tzgllg)/],c miesfgggvg;.ng proposition is needed for the main
where||-|| denotes the Euclidean vector norm, is used for the Proposition 2.1: Consider a linear time-delay mammil-
definitions of Lyapunov and asymptotic stability of (1) WlthIary system givéh by (1) wherel and A, are given b
g(rfgez (0) 'Fsoé(l;l:]([t_ﬂegdgtﬂgIisoees[%r%]r,n[%rﬂég;gﬁlbg Tootfe [Eh3at(2) and (3), respectively 2I'hen there exisgti a positive-defin
incen(-) i inuous i W . , : ool i g X
p. 14] that there exists a unique solutie() defined on gﬁ[ﬂ)&%te R"*" and a positive diagonal matrix € R™*
#—T,OO) that coincides withy on [—7,0] and satisfies (1)
or all £ > 0. 0>ATP+PA+Q+ PAQ AT P. (4)
Tg_e_ follofwing theorem givke)_sl_ necfess?ry and sugiclient
conditions for asymptotic stability of a linear time-delay
nonnegative dynamical systegh gk//en by (1) in the case I11. ADAPTIVE CONTROL FORLINEAR NONNEGATIVE
wherewu(t) = 0. For this result, the following definition is UNCERTAIN DYNAMICAL SYSTEMS WITH TIME DELAY

neede_d_. . . . _ In this section we consider the problem of characterizing
_Definition 2.3: The linear time-delay dynamical systemadaptive feedback control laws for nonnegative and com-
given by (1) isnonnegativeif for every n(-) € C,, and partmental uncertain dynamical systems with time delay
u(t) >> 0, t > 0, whereC, 2 {y¢(-) € C : ¢(#) >> 10 achieveset-pointregulation in the nonnegative orthant.
0,6 € [-7,0]}, the solutionz(t), t > 0, to (1) is Specifically, consider the following controlled linear enc

nonnegative. tain time-delay dynamical systeg given by
Theorem 2.1 ([17], [18]): Consider the linear nonnega- (t) = Axz(t)+ Aqz(t — 1)+ Bu(t), z(0) =n(0),
tive dynamical systen§y given by (1) whered € R"»*" —7<6<0, t>0, (5)

is essentially nonnegatively € R"*"™ is nonnegative, and n .

u(t) = 0. Then,G is asymptotically stable for aff € [0,00) ~Where z(t) € R", ¢ > 0, is the state of the system,

if and only if there existp, r € R™ such thatp >> 0 and u(t) € R™, ¢t > 0, is the control input,A € R"*" is

r>> 0 satisfy0 = (A+ Aq)Tp+r. an unknownxessentlally nonnegative matrixjqy € R™*"
Next, we consider a subclass of nonnegative systemal,r';f(j,ﬁgEE éR ([_Ta&a lﬁglk)noquregf r;rlgggtneleem[zitgc&s};( z);med

namely, compartmental systems. As noted in the Introdug-"3 7 o=¢ L h unknownsvstem deiay amount. The control

tion, linear compartmental dynamical systems are of maj Y Y .

importance in biological and physiological systems. Fof'PUt u() in (5) is restricted to the class of admissible
example, almost the entire field of distribution of tracefontrols consisting of measurable functions such gt €
labelled materials in steady state systems can be captured, t = 0.

by linear compartmental dynamical systems [6]. Even though active control of drug delivery systems for

Definition 2.4: Let A € R™*™. A is a compartmental physiological applications requires_control (source)uiisp

e . . n to be nonnegative, in many applications of nonnegative
matrixif A is essentially nonnegative ajd;_, Aij) <0,  gystems such as biological systems, population dynamics,

j=1n and ecological systems, the positivity constraint on the
Definition 2.5 ([17], [18]P: The linear time-delay dy- control inputis not natural. Hence, in this section we do not
namical system (1) is called eompartmental dynamical place any restriction on the sign of the control signal and
systemf A and A4 are given by design an adaptive controller that guarantees that thersyst
states remain in the nonnegative orthant and converge to a
desired equilibrium state. Specifically, for a given desire

a o "Xk, i=j, , [ 0, i=j, setpointz, € R, our aim is to design a control input
(4:9) 0, i g, ) a;j, 1#37, u(t),t>0,such thatlim, . ux(t) — z.|| = 0. However,
since in many applications of nonnegative systems and in
particular, compartmental systems, it is often necessary t

wherea;; > 0,4 € {1,---,n}, denote the loss coefficients regulate a subset of the nonnegative state variables which
of the «th compartment andi;; > 0, i # j, i,j € Usually include a central compartment, here we require that
{1,---,n}, denote the transfer coefficients from thth lim¢ o 2i(t) = zq; > 0 for i =1,---,m < n, wherezq,
compartment to théth compartment. is a desired set point for thah statex;(¢). Furthermore,

we assume that control inputs are injected directly imto

Note that if (1) is a compartmental system, thér- A4 ; X A s
is a compartmental matrix. In pharmacokinetic applicatjon giparate compartments such that the input matrix is given
B,
| ©)

an important subclass of compartmental systemsvam-

millary systems [6]. Mammillary systems are comprised B—

of a central compartmentfrom which there is outflow O(n—m)xm

and which exchanges material reversibly with one or more

peripheral compartmentsAn inflow-closed(i.e., u(t) = 0)  where B, = diag[by,---,b,,] andb; € Ry, i =1,---,m.
time-delay mammillary system is given by (1) withand For compartmental systems this assumption is not reseicti
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since control inputs correspond to control inflows to eackinally, in the case where ﬁ5) is a mammillary systedn,
individual compartment. Here, we assume that fore is diagonal and hence it follows from Proposition 2.1 that

{1,---,m}, b; is unknown For the statement of our main there exists a positive diagonal matifixe R"*" such that
result definer, £ [xdTva]T, wherezq £ [zqq, - - - ,xdm]T (8) holds. Similar remark Is also true for Theorem 4.1.
andz, £ [%u"'»:vu(nfm)]T- In the case where our objective is zero set-point regu-

) . . I lation, that is,¢(0) = z. = 0, 8 € [—7,0], the adaptive
Theorem 3.1:Consider the linear uncertain time-delaycontroller given in Theorem 3.1 can be considerably simpli-
dynamical systent given by (5) whereA is essentially " fieq " Specifically, since in this casét) >> z. = 0, t > 0,
npnnegatl\ée,AAi IS nonnr(]agatlve! and; is nonnegative and gng’ condition (7) is trivially satisfied witl, = 0, we can
given by (). Assume there exist nonnegative Veciors set¢(t) = 0 so that update law (12) is superfluous. Further-

R, " andu. € R, such that more, since (7) is trivially satisfiedd can possess eigenval-
ues in the open right-half plane. Alternatively, explaitia
0= (A+ Aq)ze + Bue. (7)  linear Lyapunov-Krasovskil functional construction for the

: ; ant dynamics, an even simpler adaptive controller can be
Furthermore, assume there exist a diagonal matrfidrived’ This result is given in the following theorem.

L " . D 8 _ . thec

Kg = diaglks,, ,kgm],_posmve_ (_j|agonal. matrix” Theorem 3.2:Consider the linear uncertain time-delay

diag[p1,---,pn], and positive-definite matrice§), R € systemG given by (5) whereB is nonnegative and given
R™*™ such that by (6). Assume there exists a diagonal matik =
T ~ ~—1 T diag[kg,, -, kg,,] such thatAs + Aq is asymptotically
O—ASP+PAS+Q+PACIQ AdP+R7 (8) Stable, WhereAs :A+BKg anng: [Kgaomx(nfm)]

where A; £ A+ BK, and K, 2 [Kg 0,,x (n_m)]. Finally, ~Furthermore, lety;, i = 1,-..,m, be positive constants.
let ¢; andd,, i — 1, --,m, bé positive constants. Then the 1nen the adaptive feedback control law
adaptive feedback control law R

u(t) = K(t)i(t), (13)

u(t) = K(£)(@(t) = va) + 6(¢), © | .

where K(t) = diaglki(t),-- kn(t)], () = Vnere K@) = diaglki(t), . ’I’“m(t)] and £(t) =
1 (t), e om@]T, and o) € BT, £ > 0, o, [z1(t), -, zm(t)]*, oOr, equivalently,
equivalently, wi(t) = ki(O)zi(t), i=1,---,m, (14)

ul(f) = k‘l(t)(l‘,(f) — Jidi) + (bi(t), i=1,---,m, (10)

wherek;(t) € R, i =1,---,m, with update law
wherek;(t) € R,t > 0,and¢;(t) e R,t > 0,i=1,---,m,

with update laws K(t) = — diag[qiz1(t), -+, g (1)), KO <<,
) 2
ki(t) = —qi(zi(t) —zas)", guarantees that the solutidn(t), K(t)) = (0, K,) of the
ki(0) <0, i=1,---,m, (11) closed-loop system given by (5), (13), (15) is Lyapunov
, stable andc(t) — 0 ast — oo for all n(-) € C,..
¢(t) i 0, if (ﬁl(t) =0 andxi(t) > Tdi,
¢ - —G;(z;(t) — zq;), otherwise
$;(0)>0, i=1,---,m, (12) IV. ADAPTIVE CONTROL FORLINEAR NONNEGATIVE
guarantees that the solution(z(t), K(t), 6(t)) = DYNAMICAL SYSTEMS WITH NONNEGATIVE CONTROL
(e, Kg,u.) Of the closed-loop system given by (5), AND TIME DELAY
(9), (11), (12) is Lyapunov stable and;(t) — xq;, . . .
i =1--omast — oo for all n() € C.. Futthermore, R T8 (SRS SOES oall donsuained 1o bé non
o(t) 220, ¢ 20, for all 5(-) € Cy. negative as are the system states. Hence, in this section

. Remark 3.1:Note that the conditions in Theorem 3.1we develop adaptive control laws for nonnegative retarded
imply that z(t) — x. ast — oo and hence it follows from systems with nonnegative control inputs. However, since

(11) and (12) thatz,, K(t),¢(t)) — M £ {(z,K,¢) € condition (7) is required to be satisfied for, < Ri

Cy x R™M X R™ @y = e, K =0, ¢ =0} ast — oo. and u. € Ry, it follows from Brockett's necessary con-
Remark 3.2:The results presented in Theorem 3.1 cadition for asymptotic stabilizability [20] that there does
be easily extended to systems with multiple delays. not exist a continuous stabilizingonnegativefeedback if

It is important to note that the adaptive control law
(11), and (12) does not require the explicit knowledge o
system matricest, Ay, and B, the gain matrixk,, and the
nonnegative constant vectag; even though Theorem 3.1
requires the existence &f, and nonnegative vectoss, and
ue such that the conditions (7) and (82) hold. Furthermor
in the case whered + Ay is semistable and minimum

9 0 € spegA + Aq) and z. € R’} (see [16] for further
#t%'%etails). Hence, in this section we assume tHat- Ay

an asymptotically stable compartmental matrix. Thus,
we proceed with the aforementioned assumptions to design
adaptive controllers for uncertain time-delay comparttaen
Systems that guarantee thai; .., x;(t) = zq; > 0 for
7=1,---,m < n, wherezy; iS a desired set point for the_
phase with respect to the outpyt— &, or A + Aq is ith ;:orln_part[[nental state while guaranteeing a nonnegative
asymptotically stable, then there always exists a diagonﬁ?n rol input. ) ] o
matrix K, € R™*™ such thatA, + A4 Is asymptotically Theorem 4.1:Consider the linear uncertain time-delay
stable. In addition, note that far= 1, ---,m, the control ?St-emg given by (5), whereA is essentially nonnegative,
input signalu;(t), ¢t > 0, can be negative depending on4d_is nonnegative A + A4 is ase/mptotma ly stable, and
the values ofz;(t), k;(t), and ¢;(¢), t > 0. However, as D IS nonnegative and given by (6). For a givea ¢ R™,
is required in nonnegative and compartmental dynamicalssume there exist vectarg € R,™™ andu. € R, such
systems the closed-loop plant states remain nonnegativkat (7) holds. In addition, assume that there exist a pesiti
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diagonal matrixP £ diag[pi, - - -, p,], and positive-definite u = Continuous infusion

matrices@, R € R™"*" such that —
~ ~_ Compartment 2 ,e‘nl‘ra
0=ATP+PA+Q+ PAQ 'AP+R.  (16) it‘

Furthermore, letg; and ¢;, ¢ = 1,---,m, be positive
constants. Then, the adaptive feedback control Taw

a1y, T

133, T

u;(t) = max{0,4;(t)}, i=1,---,m, (17)  Fig. 1. Three-compartment mammillary model for disposition ofppfol

where

;i (t) = ki(t)(@i(t) — zas) + i), i=1,---,m, (18) dug to patient gendt(ajr, V\(eigh}_,| pre—exizlting_ disease,la}ge,
; . and concomitant medication. Hence, adaptive control for
ki(t) € HIQ t >0, andg(t) €R, ¢ >0,i=1,---,m, with  5ron0fol set-point regulation can significantly improve th
update laws outcome for drug administration over manual control.

. 0. if 4.(t) <0 It has been reported in [23] that a 2.5x4§/m¢ blood
, i a4, (t) <0, . A / .
ki(t) = —gi(xi(t) — zq;)%, otherwis concentration level of propofol is required during the main
G\ Tillt) = Tdq)", OLNCTWISE, tenance stage in general anesthesia depending on patient
k;(0) <0, i=1,---,m, (19) fitness and extent of surgical stimulation. Hence, contisuo
infusion control is required for maintaining this desireud|
if ¢;(t) =0 andz;(t) > zq;, of anesthesia. Here we assume that the transfer and loss
. ' or if W) <0 coefficientsay1, a2, as1, ai3, andas; are unknown and our
Pi(t) = i) = U $:(0) >0, objective is to regulate the ﬂropofql concentration leviel o
—Gi(zi(t) — xq;), otherwise, the central compartment to the desired level of Bgdm¢ in
) the face of system uncertainty. Furthermore, since prdpofo
i=1,---,m, (20) mass in the brlood plasma .cann](c)t be r]pelasur(ra]d dlrectl¥,
. _ we measure the concentration of propofol in the centra
guarantees that the S°|Ut'Qm(t)aK(t)a¢(t)2 = (z¢,0,u¢)  compartment; that isz;/V., whereV, is the volume in
of the closed-loop system given by (5), (17), (19), (20) iiters of the central compartment. As noted in [22}, can
Lyapunov stable and;(t) — z4;, i =1,---,m, 8l — 00~ phe gpproximately calculated by, = (0.159 (/k?)(M k),
for all n(-) € C;. Furthermoreu(t) >> 0, t > 0, and  where M is the weight (mass) in kilograms of the patient.

o(t) 220,20, forall n(-) € Cy. Next, note that (21)—(23) can be written in the state space
form (5) withx = [3}1, T2, l‘g]T, A= diag[—(a11 +ao1 +
V. ADAPTIVE CONTROL FORGENERAL ANESTHESIA azi), —aiz, —ais

In this section, we illustrate the adaptive control frame- 0 a2 a3 1
work developed in this paper on a model for the dispo- Aj=|ay 0 0 |, B=|0|. (24)
sition of the intravenous anesthetic fpropofol [16], [21], a 0 0 0
eneral anesthesia. 31

[r22_] for induction and maintenance o
his model is discussed in [16] and is based on the thre
compartment mammillary model shown in Figure 1 with th
first compartment acting as the central compartment and t
remaining two compartments exchanging with the centr
compartment. The three-compartment mammillary syste
with all transfer times between compartments giverrby

0 provides a pharmacokinetic model for a patient describing, |
the distribution of propofol into the central compartmen og
(identified with the intravascular blood volume as well a
highly perfused organs) and other various tissue groups
the body. A mass balance for the whole compartment
system yields

ow, it can be shown that forq,/V. = 3.4 pg/m¢, all
e conditions of Theorem 4.1 are satisfied. Even though
opofol concentration levels in the blood plasma are a
ood indication of the depth of anesthesia, they cannot be
easured immeal timeduring surgery. Furthermore, we are
ore interested in drugffect(depth of hypnosis) rather than
concentration Hence, we consider a more realistic
el involving pharmacokinetics (drug concentration as
function of time) and pharmacodynamics (drug effect
a function of concentration) for control of anesthesia.
pecifically, we use an electroencephalogram (EEG) signal
as a measure of drug effect of anesthetic compounds on

; - _ - _ the brain [24]. Since electroencephalography providek rea
#1() (11 + 421 + as)21 () + aroma(t = 7)1+, time monl[tor%ng of the central nervous system activit%, it
arzzz(t — 1) +u(t), z1(0) =m(0), can be used to quantify levels of consciousness and hence
—7<60<0, t>0, (21) is amenable for feedback (closed-loop) control in general
() — A+ aon g (f— 1) 0) — (0 anesthesia. Furthermore, we use the Bispectral Index ,(BIS}
#2(t) = —apra(t) fanzi(t—7), w2(0) =m2(0), 3 new EEG indicator, as a measure of anesthetic effect [25].
—-7<6<0, (22) 'I;}hls index qua?nfles the n(.)nl|rr11earI relationshi slbetween
: - _ _ — the component frequencies in the electroencephalogram, as
Z3(t) a1373(t) + anza(t = 7). (6) = ms(0), well as analyzing their phase and amplitude. The BIS signal
—T<0<0, (23) is a nonlinear monotonically decreasing function of thelev

wherexl(t?, x9(t), xz3(t), t > 0, are the masses in gramsOf consciousness and is given by

of propofol in the central compartment and compartments c’

2 and 3, respectivelyy(t), t > 0, is the infusion rate BIS(cesr) = BIS <1 - 7;37), (25)

in grams/min of the anesthetic (propofol) into the central Cest T ECso
compartmenta;; > 0, i # j, i,j = 1,2,5, are the rate o0 p5 denotes the base line (awake state) value and,
constants in min® for drug transfer between compartmentspy convention, is typically assigned a value of 16Q;

anday; > 0 is the rate constant in mirt for elimination is the propofol concentration in grams/liter in the effect
from the central compartment. Even though these transfgeite compartment ébralnECg,O is the concentration at half
and loss coefficients are positive, they can be uncertainaximal effect and represents the patient’s sensitivityréo
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ail az21 ai2 asi a3
0.152 0.207 0.092 0.040 0.0048
0.119 0.114 0.055 0.041 0.0033

| TABLE |
| TargetBIS | PHARMACOKINETIC PARAMETERS[28]

w > P
Q

BIS Index [score]

EC§0 = 3,4‘ [pg/m\]‘

. .
o 1 2 3 4 5 6 7
Effect site concentration [ug/ml]

L

Fig. 2. BIS index versus effect site concentration

BIS Index [score]

drug, andy determines the degree of nonlinearity in (25?.
Here, the effect site compartment is introduced as a coerela
between the central compartment concentration and the
central nervous system concentration [26]. The effect site s w _mom @ %
compartment concentration is related to the concentration memnl

in the central compartment by the first-order delay model_.

Fig. 3. BIS Index versus time
Ceft () = et (21(t)/Ve — e (t)), cet(0) = 21(0), ¢ 2(2%

whereacq in min~! is an unknown positive time constant. where g5, and ggis, are arbitrary positive constants, it
In reality, the effect site compartment equilibrates wihle t follows from Theorem 4.1 that the ‘control input (anesthetic
central compartment in a matter of a f%V\{) m&nUtﬁc.SaThﬁ]fusion rate)u(t) > 0 for all ¢ > 0 and BIS(t) —
parameters..g, ECso , andy are determined by data fitting - T = iti
and vary from patient to patient. BIS index values of 0 an Iestt?agﬁgfzf L:em_d) ?gsgogggf%lic(igﬂgg ritnaltr;])er:;giltléi@}/amgrseof
100 correspond, respectively, to an isoelectric EEG signgle |inearized BIS equation (27) is valid. e important
?Qr? gnbEtI\EN%eSr;g?lgl grf](? gg%‘é?é‘;gg“: ﬁfg:jee”rgtg’hr:le It,]ré) note that during actual surgery or intensive care unit
statge 27 yp dation the BIS signal is obtained directly from the EEG
[27]. _ _ i _ and not (25). Furthermore, since our adaptive controller
In the following numerical simulation we selCso = 3.4 only requires the error sign@IS(t) — BIS;..ee¢ Over the
pg/me, v = 3, and BIS, = 100, so that the BIS signal is linearized range of (25), we do not require knowledge of
shown in Figure 2. The target (desired) BIS valB&..c..,  the slope of the linearized equation (27), nor do we require
is set at 50. In this case, the linearized BIS function aboWnowledge of the parametergs and EC5o. To illustrate

the target BIS value is given by the robustness properties of the proposed adaptive control
y law, we use the average set of pharmacokinetic parameters
BIS(cer) =~ BIS(ECs0) — BISy - ECY, glven in [28] for 29 patients reguw_lng general anesthesia
| or noncardiac surgery. For our design we assuvhe= 7
. et eor = 125 — 22.06¢ kg and we switch from Set A to Set B given in Table | at
(clq + ECL)? off DCeff- t = 25 min. Furthermore, we assume thattat 25 min
© cett=ECs0 the pharmacodynamic parameters;E@nd~ are switched

(27) from 3.4ug/m? and 3 to 4.Qug/m¢ and 4, respectively. Here
L " we consider noncardiac surgery since cardiac surgery often
Furthermore, for simplicity of exposition, we assume thajilizes hypothermia which itself changes the BIS signal.
the effect site compartment equilibrates instantaneousiyjip geis, = 1 x 1076 g/min?, gprs, = 1 x 103 g/min?,

with the central compartment; that is, we assume th%%d- - o "
_ initial conditionse(0) = [0, 0, 0]* g, k1(0) = 0 min—*,
= > 0. \ e '
3%?n&h?a323ti33?§2%e€é?k corcftlrgl?érvc 1= 0N ang ¢1(0) = 0.01 g/min~". Figure 3 shows the BIS index
versus time and figure 4 shows the propofol concentration
uy(t) = max{0, a1 (t)}, (28) in the central compartment versus time.

where

Ul(t) = -k (t) (BIS(t) - BIStarget) +¢1 (t)a (29) . . .
. In this paper, we developed a direct adaptive control
ki(t) e R, t >0, and¢:(t) € R, t > 0, with update laws  framework for linear uncertain nonnegative and compart-

mental dynamical systems with unknown time delay. In par-

VI. CONCLUSION

Pt = 0, if a1(t) <0, ticular, a Lyapunov-Krasovskii-based direct adaptivetoan

BT U —gais, (BIS(t) — BlSgarget)?, otherwise, framework for guaranteeing set-point regulation for na@ine
ative and compartmental time-delay sistems with specific

k1(0) <0, (30)  applications to mammillary pharmacokinetic models was

. developed. FlnaII%, we demonstrated the framework on

if ¢1(t) = 0 and BIS(t) > BlStarget a drug delivery pharmacokinetic/pharmacodynamic model

o) = " orif 4y(t) <0, $1(0) >0 with time delay. Extensions of the proposed adaptive cbntro
! - W =" framework to nonlinear nonnegative systems as well as to
dris, (BIS(t) — BIStarget ), otherwise, systems with exogenous disturbances will be addressed in

(31) a future paper.
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