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Abstract— In this paper, we develop a direct adaptive control
framework for uncertain linear nonnegative and compartmen-
tal dynamical systems with unknown time delay. The specific
focus of the paper is on compartmental pharmacokinetic
models and their applications to drug delivery systems. In
particular, we develop a Lyapunov-Krasovskii-based direct
adaptive control framework for guaranteeing set-point regu-
lation of the closed-loop system in the nonnegative orthant in
the presence of unknown system time delay. The framework
additionally guarantees nonnegativity of the control signal.
Finally, we demonstrate the framework on a drug delivery
model for general anesthesia involving system time delays.

I. I NTRODUCTION

Nonnegative and compartmental models play a key role
in the understanding of many processes in biological and
medical sciences [1–9]. Compartmental systems are mod-
eled by interconnected subsystems (or compartments) which
exchange variable nonnegative quantities of material with
conservation laws describing transfer, accumulation, and
elimination between compartments and the environment.
In many compartmental pharmacokinetic system models,
transfers between compartments are assumed to be instan-
taneous; that is, the model does not account for material in
transit. Even though this is a valid assumption for certain
biological and physiological systems, it is not true in gen-
eral; especially in pharmacokinetic and pharmacodynamic
models. For example, if a bolus of drug is injected into
the circulation and we seek its concentration level in the
extracellular and intercellular space of some organ, there
exists a time lag before it is detected in that organ [6], [10],
[11]. In this case, assuming instantaneous mass transfer
between compartments will yield erroneous models. Hence,
to accurately describe the distribution of pharmacological
agents in the human body, it is necessary to include in any
mathematical compartmental pharmacokinetic model some
information of the past system states. In this case the stateof
the system at any given time involves apiece of trajectories
in the space of continuous functions defined on an interval
in the nonnegative orthant. This of course leads to (infinite-
dimensional) delay dynamical systems [12–15].

In a recent paper [16], the authors present a direct adap-
tive control framework for set-point regulation of linear non-
negative and compartmental systems with applications to
clinical pharmacology. In this paper, we extend the resultsof
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[16] to the case of nonnegative and compartmental dynam-
ical systems with unknown system time delay. Specifically,
we develop a Lyapunov-Krasovskii-based direct adaptive
control framework for guaranteeing set-point regulation for
linear uncertain nonnegative and compartmental dynamical
systems with unknown time delay. The specific focus of the
paper is on pharmacokinetic models and their applications
to drug delivery systems. In particular, we develop direct
adaptive controllers with nonnegative control inputs as well
as adaptive controllers with the absence of such a restriction.
Finally, we demonstrate the framework on a drug delivery
model for general anesthesia that involves system time
delays.

II. M ATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
and some key results concerning linear nonnegative dynam-
ical systems with time delay [17], [18] that are necessary for
developing the main results of this paper. Specifically, for
x ∈ R

n we write x ≥≥ 0 (resp.,x >> 0) to indicate that
every component ofx is nonnegative (resp., positive). In this
case we say thatx is nonnegativeor positive, respectively.
Likewise, A ∈ R

n×m is nonnegative1 or positive if every
entry ofA is nonnegative or positive, respectively, which is
written asA ≥≥ 0 or A >> 0, respectively. Furthermore,
for A ∈ R

n×n we write A ≥ 0 (resp.,A > 0) to indicate
that A is a nonnegative-definite (resp., positive-definite)
matrix. LetR

n

+ andR
n
+ denote the nonnegative and positive

orthants ofRn; that is, ifx ∈ R
n, thenx ∈ R

n

+ andx ∈ R
n
+

are equivalent, respectively, tox ≥≥ 0 and x >> 0. The
following definition introduces the notion of a nonnegative
(resp., positive) function.

Definition 2.1: Let T > 0. A real functionu : [0, T ] →
R

m is a nonnegative(resp.,positive) function if u(t) ≥≥ 0
(resp.,u(t) >> 0) on the interval[0, T ].

The next definition introduces the notion of essentially
nonnegative matrices.

Definition 2.2 ( [19]): Let A ∈ R
n×n. A is essentially

nonnegativeif A(i,j) ≥ 0, i, j = 1, · · · , n, i 6= j.

In this paper, we consider a controlled linear time-delay
dynamical systemG of the form

ẋ(t) = Ax(t) + Adx(t − τ) + Bu(t), x(θ) = η(θ),
−τ ≤ θ ≤ 0, t ≥ 0, (1)

1In this paper it is important to distinguish between a square nonnegative
(resp., positive) matrix and a nonnegative-definite (resp.,positive-definite)
matrix.



wherex(t) ∈ R
n, u(t) ∈ R

m, t ≥ 0, A ∈ R
n×n, Ad ∈

R
n×n, B ∈ R

n×m, τ ≥ 0, η(·) ∈ C = C([−τ, 0], Rn) is a
continuous vector valued function specifying the initial state
of the system, andC([−τ, 0], Rn) denotes a Banach space of
continuous functions mapping the interval[−τ, 0] into R

n

with the topology of uniform convergence. Note that the
state of (1) at timet is thepiece of trajectoriesx between
t − τ and t, or, equivalently, theelementxt in the space
of continuous functions defined on the interval[−τ, 0] and
taking values inR

n; that is, xt ∈ C([−τ, 0], Rn), where
xt(θ) , x(t + θ), θ ∈ [−τ, 0]. Furthermore, since for a
given time t the piece of the trajectoriesxt is defined on
[−τ, 0], the uniform norm|||xt||| = supθ∈[−τ,0] ‖x(t + θ)‖,
where‖·‖ denotes the Euclidean vector norm, is used for the
definitions of Lyapunov and asymptotic stability of (1) with
u(t) ≡ 0. For further details see [12], [13]. Finally, note that
sinceη(·) is continuous it follows from Theorem 2.1 of [13,
p. 14] that there exists a unique solutionx(η) defined on
[−τ,∞) that coincides withη on [−τ, 0] and satisfies (1)
for all t ≥ 0.

The following theorem gives necessary and sufficient
conditions for asymptotic stability of a linear time-delay
nonnegative dynamical systemG given by (1) in the case
whereu(t) ≡ 0. For this result, the following definition is
needed.

Definition 2.3: The linear time-delay dynamical system
given by (1) isnonnegativeif for every η(·) ∈ C+, and
u(t) ≥≥ 0, t ≥ 0, whereC+ , {ψ(·) ∈ C : ψ(θ) ≥≥
0, θ ∈ [−τ, 0]}, the solution x(t), t ≥ 0, to (1) is
nonnegative.

Theorem 2.1 ([17], [18]): Consider the linear nonnega-
tive dynamical systemG given by (1) whereA ∈ R

n×n

is essentially nonnegative,Ad ∈ R
n×n is nonnegative, and

u(t) ≡ 0. Then,G is asymptotically stable for allτ ∈ [0,∞)
if and only if there existp, r ∈ R

n such thatp >> 0 and
r >> 0 satisfy0 = (A + Ad)Tp + r.

Next, we consider a subclass of nonnegative systems;
namely, compartmental systems. As noted in the Introduc-
tion, linear compartmental dynamical systems are of major
importance in biological and physiological systems. For
example, almost the entire field of distribution of tracer
labelled materials in steady state systems can be captured
by linear compartmental dynamical systems [6].

Definition 2.4: Let A ∈ R
n×n. A is a compartmental

matrix if A is essentially nonnegative and
∑n

i=1 A(i,j) ≤ 0,
j = 1, · · · , n.

Definition 2.5 ([17], [18]): The linear time-delay dy-
namical system (1) is called acompartmental dynamical
systemif A andAd are given by

A(i,j) =

{

−
∑n

k=1 aki, i = j,
0, i 6= j,

Ad(i,j) =

{

0, i = j,
aij , i 6= j,

whereaii ≥ 0, i ∈ {1, · · · , n}, denote the loss coefficients
of the ith compartment andaij ≥ 0, i 6= j, i, j ∈
{1, · · · , n}, denote the transfer coefficients from thejth
compartment to theith compartment.

Note that if (1) is a compartmental system, thenA + Ad
is a compartmental matrix. In pharmacokinetic applications,
an important subclass of compartmental systems aremam-
millary systems [6]. Mammillary systems are comprised
of a central compartmentfrom which there is outflow
and which exchanges material reversibly with one or more
peripheral compartments. An inflow-closed(i.e., u(t) ≡ 0)
time-delay mammillary system is given by (1) withA and

Ad given by

A = diag[−

n
∑

j=1

aj1,−a12, · · · ,−a1n], (2)

Ad(i,j) =







0, i = j,
0, i 6= 1 and j 6= 1,

aij , otherwise,
(3)

where the transfer coefficientsaij , i, j = 1, · · · , n, and the
loss coefficienta11 are positive.

Finally, the following proposition is needed for the main
results of this paper.

Proposition 2.1:Consider a linear time-delay mammil-
lary system given by (1) whereA and Ad are given by
(2) and (3), respectively. Then there exist a positive-definite
matrixQ ∈ R

n×n and a positive diagonal matrixP ∈ R
n×n

such that

0 > ATP + PA + Q + PAdQ−1AT
d P. (4)

III. A DAPTIVE CONTROL FORL INEAR NONNEGATIVE

UNCERTAIN DYNAMICAL SYSTEMS WITH TIME DELAY

In this section we consider the problem of characterizing
adaptive feedback control laws for nonnegative and com-
partmental uncertain dynamical systems with time delay
to achieveset-pointregulation in the nonnegative orthant.
Specifically, consider the following controlled linear uncer-
tain time-delay dynamical systemG given by

ẋ(t) = Ax(t) + Adx(t − τ) + Bu(t), x(θ) = η(θ),
−τ ≤ θ ≤ 0, t ≥ 0, (5)

where x(t) ∈ R
n, t ≥ 0, is the state of the system,

u(t) ∈ R
m, t ≥ 0, is the control input,A ∈ R

n×n is
an unknownessentially nonnegative matrix,Ad ∈ R

n×n

andB ∈ R
n×m areunknownnonnegative matrices,η(·) ∈

{ψ(·) ∈ C+([−τ, 0], Rn) : ψ(θ) ≥≥ 0, θ ∈ [−τ, 0]}, and
τ ≥ 0 is an unknownsystem delay amount. The control
input u(·) in (5) is restricted to the class of admissible
controls consisting of measurable functions such thatu(t) ∈
R

m, t ≥ 0.
Even though active control of drug delivery systems for

physiological applications requires control (source) inputs
to be nonnegative, in many applications of nonnegative
systems such as biological systems, population dynamics,
and ecological systems, the positivity constraint on the
control input is not natural. Hence, in this section we do not
place any restriction on the sign of the control signal and
design an adaptive controller that guarantees that the system
states remain in the nonnegative orthant and converge to a
desired equilibrium state. Specifically, for a given desired
set pointxe ∈ R

n

+, our aim is to design a control input
u(t), t ≥ 0, such thatlimt→∞ ‖x(t) − xe‖ = 0. However,
since in many applications of nonnegative systems and in
particular, compartmental systems, it is often necessary to
regulate a subset of the nonnegative state variables which
usually include a central compartment, here we require that
limt→∞ xi(t) = xdi ≥ 0 for i = 1, · · · ,m ≤ n, wherexdi
is a desired set point for theith statexi(t). Furthermore,
we assume that control inputs are injected directly intom
separate compartments such that the input matrix is given
by

B =

[

Bu

0(n−m)×m

]

, (6)

whereBu , diag[b1, · · · , bm] and bi ∈ R+, i = 1, · · · ,m.
For compartmental systems this assumption is not restrictive



since control inputs correspond to control inflows to each
individual compartment. Here, we assume that fori ∈
{1, · · · ,m}, bi is unknown. For the statement of our main
result definexe , [xT

d , xT
u ]T, wherexd , [xd1, · · · , xdm]T

andxu , [xu1, · · · , xu(n−m)]
T.

Theorem 3.1:Consider the linear uncertain time-delay
dynamical systemG given by (5) whereA is essentially
nonnegative,Ad is nonnegative, andB is nonnegative and
given by (6). Assume there exist nonnegative vectorsxu ∈

R
n−m

+ andue ∈ R
m

+ such that

0 = (A + Ad)xe + Bue. (7)

Furthermore, assume there exist a diagonal matrix
Kg = diag[kg1, · · · , kgm

], positive diagonal matrixP ,

diag[p1, · · · , pn], and positive-definite matrices̃Q, R ∈
R

n×n such that

0 = AT
s P + PAs + Q̃ + PAdQ̃

−1

AT
d P + R, (8)

whereAs , A + BK̃g andK̃g , [Kg 0m×(n−m)]. Finally,
let qi and q̂i, i = 1, · · · ,m, be positive constants. Then the
adaptive feedback control law

u(t) = K(t)(x̂(t) − xd) + φ(t), (9)

where K(t) = diag[k1(t), · · · , km(t)], x̂(t) =
[x1(t), · · · , xm(t)]T, and φ(t) ∈ R

m, t ≥ 0, or,
equivalently,

ui(t) = ki(t)(xi(t) − xdi) + φi(t), i = 1, · · · ,m, (10)

whereki(t) ∈ R, t ≥ 0, andφi(t) ∈ R, t ≥ 0, i = 1, · · · ,m,
with update laws

k̇i(t) = −qi(xi(t) − xdi)
2,

ki(0) ≤ 0, i = 1, · · · ,m, (11)

φ̇i(t) =

{

0, if φi(t) = 0 andxi(t) ≥ xdi,
−q̂i(xi(t) − xdi), otherwise,

φi(0) ≥ 0, i = 1, · · · ,m, (12)

guarantees that the solution(x(t),K(t), φ(t)) ≡
(xe,Kg, ue) of the closed-loop system given by (5),
(9), (11), (12) is Lyapunov stable andxi(t) → xdi,
i = 1, · · · ,m as t → ∞ for all η(·) ∈ C+. Furthermore,
x(t) ≥≥ 0, t ≥ 0, for all η(·) ∈ C+.

Remark 3.1:Note that the conditions in Theorem 3.1
imply that x(t) → xe as t → ∞ and hence it follows from
(11) and (12) that(xt,K(t), φ(t)) → M , {(xt,K, φ) ∈
C+ × R

m×m × R
m : xt ≡ xe, K̇ = 0, φ̇ = 0} as t → ∞.

Remark 3.2:The results presented in Theorem 3.1 can
be easily extended to systems with multiple delays.

It is important to note that the adaptive control law (9),
(11), and (12) does not require the explicit knowledge of the
system matricesA, Ad, andB, the gain matrixKg, and the
nonnegative constant vectorue; even though Theorem 3.1
requires the existence ofKg and nonnegative vectorsxu and
ue such that the conditions (7) and (8) hold. Furthermore,
in the case whereA + Ad is semistable and minimum
phase with respect to the outputy = x̂, or A + Ad is
asymptotically stable, then there always exists a diagonal
matrix Kg ∈ R

m×m such thatAs + Ad is asymptotically
stable. In addition, note that fori = 1, · · · ,m, the control
input signalui(t), t ≥ 0, can be negative depending on
the values ofxi(t), ki(t), and φi(t), t ≥ 0. However, as
is required in nonnegative and compartmental dynamical
systems the closed-loop plant states remain nonnegative.

Finally, in the case where (5) is a mammillary system,As
is diagonal and hence it follows from Proposition 2.1 that
there exists a positive diagonal matrixP ∈ R

n×n such that
(8) holds. Similar remark is also true for Theorem 4.1.

In the case where our objective is zero set-point regu-
lation, that is,ψe(θ) = xe = 0, θ ∈ [−τ, 0], the adaptive
controller given in Theorem 3.1 can be considerably simpli-
fied. Specifically, since in this casex(t) ≥≥ xe = 0, t ≥ 0,
and condition (7) is trivially satisfied withue = 0, we can
setφ(t) ≡ 0 so that update law (12) is superfluous. Further-
more, since (7) is trivially satisfied,A can possess eigenval-
ues in the open right-half plane. Alternatively, exploiting a
linear Lyapunov-Krasovskii functional construction for the
plant dynamics, an even simpler adaptive controller can be
derived. This result is given in the following theorem.

Theorem 3.2:Consider the linear uncertain time-delay
systemG given by (5) whereB is nonnegative and given
by (6). Assume there exists a diagonal matrixKg =
diag[kg1, · · · , kgm

] such thatAs + Ad is asymptotically
stable, whereAs = A + BK̃g and K̃g = [Kg, 0m×(n−m)].
Furthermore, letqi, i = 1, · · · ,m, be positive constants.
Then the adaptive feedback control law

u(t) = K(t)x̂(t), (13)

where K(t) = diag[k1(t), · · · , km(t)] and x̂(t) =
[x1(t), · · · , xm(t)]T, or, equivalently,

ui(t) = ki(t)xi(t), i = 1, · · · ,m, (14)

whereki(t) ∈ R, i = 1, · · · ,m, with update law

K̇(t) = −diag[q1x1(t), · · · , qmxm(t)], K(0) ≤≤ 0,
(15)

guarantees that the solution(x(t),K(t)) ≡ (0,Kg) of the
closed-loop system given by (5), (13), (15) is Lyapunov
stable andx(t) → 0 as t → ∞ for all η(·) ∈ C+.

IV. A DAPTIVE CONTROL FORL INEAR NONNEGATIVE

DYNAMICAL SYSTEMS WITH NONNEGATIVE CONTROL

AND TIME DELAY

In drug delivery systems for physiological processes,
control (source) inputs are usually constrained to be non-
negative as are the system states. Hence, in this section
we develop adaptive control laws for nonnegative retarded
systems with nonnegative control inputs. However, since
condition (7) is required to be satisfied forxe ∈ R

n

+

and ue ∈ R
m

+ , it follows from Brockett’s necessary con-
dition for asymptotic stabilizability [20] that there does
not exist a continuous stabilizingnonnegativefeedback if
0 ∈ spec(A + Ad) and xe ∈ R

n
+ (see [16] for further

details). Hence, in this section we assume thatA + Ad
is an asymptotically stable compartmental matrix. Thus,
we proceed with the aforementioned assumptions to design
adaptive controllers for uncertain time-delay compartmental
systems that guarantee thatlimt→∞ xi(t) = xdi ≥ 0 for
i = 1, · · · ,m ≤ n, wherexdi is a desired set point for the
ith compartmental state while guaranteeing a nonnegative
control input.

Theorem 4.1:Consider the linear uncertain time-delay
systemG given by (5), whereA is essentially nonnegative,
Ad is nonnegative,A + Ad is asymptotically stable, and
B is nonnegative and given by (6). For a givenxd ∈ R

m,
assume there exist vectorsxu ∈ R

n−m
+ andue ∈ R

m

+ such
that (7) holds. In addition, assume that there exist a positive



diagonal matrixP , diag[p1, · · · , pn], and positive-definite
matricesQ̃, R ∈ R

n×n such that

0 = ATP + PA + Q̃ + PAdQ̃−1AT
d P + R. (16)

Furthermore, letqi and q̂i, i = 1, · · · ,m, be positive
constants. Then, the adaptive feedback control law

ui(t) = max{0, ûi(t)}, i = 1, · · · ,m, (17)

where

ûi(t) = ki(t)(xi(t) − xdi) + φi(t), i = 1, · · · ,m, (18)

ki(t) ∈ R, t ≥ 0, andφi(t) ∈ R, t ≥ 0, i = 1, · · · ,m, with
update laws

k̇i(t) =

{

0, if ûi(t) < 0,
−qi(xi(t) − xdi)

2, otherwise,

ki(0) ≤ 0, i = 1, · · · ,m, (19)

φ̇i(t) =











0,
if φi(t) = 0 andxi(t) > xdi,
or if ûi(t) ≤ 0,

−q̂i(xi(t) − xdi), otherwise,

φi(0) ≥ 0,

i = 1, · · · ,m, (20)

guarantees that the solution(x(t),K(t), φ(t)) ≡ (xe, 0, ue)
of the closed-loop system given by (5), (17), (19), (20) is
Lyapunov stable andxi(t) → xdi, i = 1, · · · ,m, ast → ∞
for all η(·) ∈ C+. Furthermore,u(t) ≥≥ 0, t ≥ 0, and
x(t) ≥≥ 0, t ≥ 0, for all η(·) ∈ C+.

V. A DAPTIVE CONTROL FORGENERAL ANESTHESIA

In this section, we illustrate the adaptive control frame-
work developed in this paper on a model for the dispo-
sition of the intravenous anesthetic propofol [16], [21],
[22] for induction and maintenance of general anesthesia.
This model is discussed in [16] and is based on the three-
compartment mammillary model shown in Figure 1 with the
first compartment acting as the central compartment and the
remaining two compartments exchanging with the central
compartment. The three-compartment mammillary system
with all transfer times between compartments given byτ >
0 provides a pharmacokinetic model for a patient describing
the distribution of propofol into the central compartment
(identified with the intravascular blood volume as well as
highly perfused organs) and other various tissue groups of
the body. A mass balance for the whole compartmental
system yields

ẋ1(t) = −(a11 + a21 + a31)x1(t) + a12x2(t − τ)+,

a13x3(t − τ) + u(t), x1(θ) = η1(θ),
−τ ≤ θ ≤ 0, t ≥ 0, (21)

ẋ2(t) = −a12x2(t) + a21x1(t − τ), x2(θ) = η2(θ),
−τ ≤ θ ≤ 0, (22)

ẋ3(t) = −a13x3(t) + a31x1(t − τ), x3(θ) = η3(θ),
−τ ≤ θ ≤ 0, (23)

wherex1(t), x2(t), x3(t), t ≥ 0, are the masses in grams
of propofol in the central compartment and compartments
2 and 3, respectively,u(t), t ≥ 0, is the infusion rate
in grams/min of the anesthetic (propofol) into the central
compartment,aij > 0, i 6= j, i, j = 1, 2, 3, are the rate
constants in min−1 for drug transfer between compartments,
and a11 > 0 is the rate constant in min−1 for elimination
from the central compartment. Even though these transfer
and loss coefficients are positive, they can be uncertain

Compartment 2 Compartment 3
Central

Compartment

u ≡ Continuous infusion

a12x2, τ

a21x1, τ

a31x1, τ

a13x3, τ

a11x1

Fig. 1. Three-compartment mammillary model for disposition of propofol

due to patient gender, weight, pre-existing disease, age,
and concomitant medication. Hence, adaptive control for
propofol set-point regulation can significantly improve the
outcome for drug administration over manual control.

It has been reported in [23] that a 2.5–6µg/mℓ blood
concentration level of propofol is required during the main-
tenance stage in general anesthesia depending on patient
fitness and extent of surgical stimulation. Hence, continuous
infusion control is required for maintaining this desired level
of anesthesia. Here we assume that the transfer and loss
coefficientsa11, a12, a21, a13, anda31 are unknown and our
objective is to regulate the propofol concentration level of
the central compartment to the desired level of 3.4µg/mℓ in
the face of system uncertainty. Furthermore, since propofol
mass in the blood plasma cannot be measured directly,
we measure the concentration of propofol in the central
compartment; that is,x1/Vc, where Vc is the volume in
liters of the central compartment. As noted in [22],Vc can
be approximately calculated byVc = (0.159 ℓ/kg)(M kg),
whereM is the weight (mass) in kilograms of the patient.

Next, note that (21)–(23) can be written in the state space
form (5) with x = [x1, x2, x3]

T, A = diag[−(a11 +a21 +
a31), −a12, −a13]

Ad =





0 a12 a13

a21 0 0
a31 0 0



 , B =





1
0
0



 . (24)

Now, it can be shown that forxd1/Vc = 3.4 µg/mℓ, all
the conditions of Theorem 4.1 are satisfied. Even though
propofol concentration levels in the blood plasma are a
good indication of the depth of anesthesia, they cannot be
measured inreal timeduring surgery. Furthermore, we are
more interested in drugeffect(depth of hypnosis) rather than
drug concentration. Hence, we consider a more realistic
model involving pharmacokinetics (drug concentration as
a function of time) and pharmacodynamics (drug effect
as a function of concentration) for control of anesthesia.
Specifically, we use an electroencephalogram (EEG) signal
as a measure of drug effect of anesthetic compounds on
the brain [24]. Since electroencephalography provides real-
time monitoring of the central nervous system activity, it
can be used to quantify levels of consciousness and hence
is amenable for feedback (closed-loop) control in general
anesthesia. Furthermore, we use the Bispectral Index (BIS),
a new EEG indicator, as a measure of anesthetic effect [25].
This index quantifies the nonlinear relationships between
the component frequencies in the electroencephalogram, as
well as analyzing their phase and amplitude. The BIS signal
is a nonlinear monotonically decreasing function of the level
of consciousness and is given by

BIS(ceff) = BIS0

(

1 −
cγ
eff

cγ
eff + ECγ

50

)

, (25)

whereBIS0 denotes the base line (awake state) value and,
by convention, is typically assigned a value of 100,ceff
is the propofol concentration in grams/liter in the effect
site compartment (brain),EC50 is the concentration at half
maximal effect and represents the patient’s sensitivity tothe
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Fig. 2. BIS index versus effect site concentration

drug, andγ determines the degree of nonlinearity in (25).
Here, the effect site compartment is introduced as a correlate
between the central compartment concentration and the
central nervous system concentration [26]. The effect site
compartment concentration is related to the concentration
in the central compartment by the first-order delay model

ċeff(t) = aeff(x1(t)/Vc − ceff(t)), ceff(0) = x1(0), t ≥ 0,
(26)

whereaeff in min−1 is an unknown positive time constant.
In reality, the effect site compartment equilibrates with the
central compartment in a matter of a few minutes. The
parametersaeff , EC50 , andγ are determined by data fitting
and vary from patient to patient. BIS index values of 0 and
100 correspond, respectively, to an isoelectric EEG signal
and an EEG signal of a fully conscious patient; while the
range between 40 and 60 indicates a moderate hypnotic
state [27].

In the following numerical simulation we setEC50 = 3.4
µg/mℓ, γ = 3, andBIS0 = 100, so that the BIS signal is
shown in Figure 2. The target (desired) BIS value,BIStarget,
is set at 50. In this case, the linearized BIS function about
the target BIS value is given by

BIS(ceff) ≃ BIS(EC50) − BIS0 · ECγ
50

·
γcγ−1

eff

(cγ
eff + ECγ

50)
2

∣

∣

∣

∣

∣

ceff=EC50

· ceff = 125 − 22.06ceff .

(27)

Furthermore, for simplicity of exposition, we assume that
the effect site compartment equilibrates instantaneously
with the central compartment; that is, we assume that
aeff → ∞ and henceceff(t) = x1(t)/Vc, t ≥ 0. Now,
using the adaptive feedback controller

u1(t) = max{0, û1(t)}, (28)

where

û1(t) = −k1(t)(BIS(t) − BIStarget) + φ1(t), (29)

k1(t) ∈ R, t ≥ 0, andφ1(t) ∈ R, t ≥ 0, with update laws

k̇1(t) =

{

0, if û1(t) < 0,
−qBIS1

(BIS(t) − BIStarget)
2, otherwise,

k1(0) ≤ 0, (30)

φ̇1(t) =











0,
if φ1(t) = 0 andBIS(t) > BIStarget,
or if û1(t) ≤ 0,

q̂BIS1
(BIS(t) − BIStarget), otherwise,

φ1(0) ≥ 0,

(31)

Set a11 a21 a12 a31 a13

A 0.152 0.207 0.092 0.040 0.0048
B 0.119 0.114 0.055 0.041 0.0033

TABLE I

PHARMACOKINETIC PARAMETERS [28]
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Fig. 3. BIS Index versus time

where qBIS1
and q̂BIS1

are arbitrary positive constants, it
follows from Theorem 4.1 that the control input (anesthetic
infusion rate)u(t) ≥ 0 for all t ≥ 0 and BIS(t) →
BIStarget as t → ∞ for any (uncertain) positive values of
the transfer and loss coefficients in the range ofceff where
the linearized BIS equation (27) is valid. It is important
to note that during actual surgery or intensive care unit
sedation the BIS signal is obtained directly from the EEG
and not (25). Furthermore, since our adaptive controller
only requires the error signalBIS(t) − BIStarget over the
linearized range of (25), we do not require knowledge of
the slope of the linearized equation (27), nor do we require
knowledge of the parametersγ and EC50. To illustrate
the robustness properties of the proposed adaptive control
law, we use the average set of pharmacokinetic parameters
given in [28] for 29 patients requiring general anesthesia
for noncardiac surgery. For our design we assumeM = 70
kg and we switch from Set A to Set B given in Table I at
t = 25 min. Furthermore, we assume that att = 25 min
the pharmacodynamic parameters EC50 andγ are switched
from 3.4µg/mℓ and 3 to 4.0µg/mℓ and 4, respectively. Here
we consider noncardiac surgery since cardiac surgery often
utilizes hypothermia which itself changes the BIS signal.
With qBIS1

= 1 × 10−6 g/min2, q̂BIS1
= 1 × 10−3 g/min2,

and initial conditionsx(0) = [0, 0, 0]T g,k1(0) = 0 min−1,
andφ1(0) = 0.01 g/min−1. Figure 3 shows the BIS index
versus time and figure 4 shows the propofol concentration
in the central compartment versus time.

VI. CONCLUSION

In this paper, we developed a direct adaptive control
framework for linear uncertain nonnegative and compart-
mental dynamical systems with unknown time delay. In par-
ticular, a Lyapunov-Krasovskii-based direct adaptive control
framework for guaranteeing set-point regulation for nonneg-
ative and compartmental time-delay systems with specific
applications to mammillary pharmacokinetic models was
developed. Finally, we demonstrated the framework on
a drug delivery pharmacokinetic/pharmacodynamic model
with time delay. Extensions of the proposed adaptive control
framework to nonlinear nonnegative systems as well as to
systems with exogenous disturbances will be addressed in
a future paper.
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