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Abstract—Nonnegative and compartmental dynamical system
models are derived from mass and energy balance considera-
tions that involve dynamic states whose values are nonnegative.
These models are widespread in engineering and life sciences
and typically involve the exchange of nonnegative quantities
between subsystems or compartments wherein each compartment
is assumed to be kinetically homogeneous. In this paper, we
develop a full-state feedback neural adaptive control framework
for adaptive set-point regulation of nonlinear uncertain nonneg-
ative and compartmental systems. The proposed framework is
Lyapunov-based and guarantees ultimate boundedness of the
error signals corresponding to the physical system states and the
neural network weighting gains. In addition, the neural adaptive
controller guarantees that the physical system states remain in
the nonnegative orthant of the state–space for nonnegative initial
conditions.

Index Terms—Adaptive control, neural networks, nonlinear
compartmental systems, nonlinear nonnegative systems, nonnega-
tive control, set-point regulation.

I. INTRODUCTION

ONE OF THE primary reasons for the large interest in
neural networks is their capability to approximate a large

class of continuous nonlinear maps from the collective action
of very simple, autonomous processing units interconnected
in simple ways. Neural networks have also attracted attention
due to their inherently parallel and highly redundant processing
architecture that makes it possible to develop parallel weight
update laws. This parallelism makes it possible to effectively
update a neural network on line. These properties make neural
networks a viable paradigm for adaptive system identification
and control of complex highly uncertain dynamical systems,
and as a consequence the use of neural networks for identifica-
tion and control has become an active area of research [1]–[9].
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Modern complex engineering systems as well as biological
and physiological systems are highly interconnected and mu-
tually interdependent, both physically and through a multitude
of information and communication networks. By properly for-
mulating these systems in terms of subsystem interaction and
energy/mass transfer, the dynamical models of many of these
systems can be derived from mass, energy, and information bal-
ance considerations that involve dynamic states whose values are
nonnegative. Hence, it follows from physical considerations that
the state trajectory of such systems remains in the nonnegative or-
thant of the state–space for nonnegative initial conditions. Such
systems are commonly referred to as nonnegative dynamical sys-
tems in [10]–[13]. A subclass of nonnegative dynamical systems
are compartmental systems [12], [14]–[23]. Compartmental
systems involve dynamical models that are characterized by con-
servation laws (e.g., mass and energy) capturing the exchange
of material between coupled macroscopic subsystems known as
compartments. Each compartment is assumed to be kinetically
homogeneous; that is, any material entering the compartment
is instantaneously mixed with the material of the compartment.
The range of application of nonnegative systems and compart-
mental systems is quite large and includes biological, ecological,
and chemical systems [16], [21], [24], [25]. Due to the severe
complexities, nonlinearities, and uncertainties inherent in these
systems, neural networks provide an ideal framework for online
adaptive control because of their parallel processing flexibility
and adaptability.

In this paper we develop a full-state feedback neural adaptive
control framework for set-point regulation of nonlinear uncer-
tain nonnegative and compartmental systems. Nonzero set-point
regulation for nonnegative dynamical systems is a key design
requirement since stabilization of nonnegative systems natu-
rally deals with equilibrium points in the interior of the non-
negative orthant. The proposed framework is Lyapunov-based
and guarantees ultimate boundedness of the error signals corre-
sponding to the physical system states as well as the neural net-
work weighting gains. The neuro adaptive controllers are con-
structed without requiring knowledge of the system dynamics
while guaranteeing that the physical system states remain in the
nonnegative orthant of the state–space. The proposed neuro con-
trol architecture is modular in the sense that if a nominal linear
design model is available, the neuro adaptive controller can be
augmented to the nominal design to account for system non-
linearities and system uncertainty. Furthermore, since in certain
applications of nonnegative and compartmental systems (e.g.,
pharmacological systems for active drug administration) con-
trol (source) inputs as well as the system states need to be non-
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negative, we also develop neuro adaptive controllers that guar-
antee the control signal as well as the physical system states
remain nonnegative for nonnegative initial conditions. We note
that neuro adaptive controllers for nonnegative dynamical sys-
tems have not been addressed in the literature. Our approach
however, is related to the neuro adaptive control methods devel-
oped in [26]–[28]. Finally, the proposed neuro adaptive control
framework is used to regulate the temperature of a continuously
stirred tank reactor involving exothermic irreversible reactions.

The contents of the paper are as follows. In Section II, we
provide mathematical preliminaries on nonnegative dynamical
systems that are necessary for developing the main results of
this paper. In Section III, we develop new Lyapunov-like the-
orems for partial boundedness and partial ultimate bounded-
ness for nonlinear dynamical systems necessary for obtaining
less conservative ultimate bounds for neuro adaptive controllers
as compared to ultimate bounds derived using classical bound-
edness and ultimate boundedness notions. In Section IV, we
present our main neuro adaptive control framework for adap-
tive set-point regulation of nonlinear uncertain nonnegative and
compartmental systems. In Section V, we extend the results of
Section IV to the case where control inputs are constrained to be
nonnegative. To demonstrate the efficacy of the proposed neuro
adaptive control framework, in Section VI, we apply our frame-
work to control a continuously stirred tank reactor involving
exothermic irreversible reactions. Finally, in Section VII, we
draw some conclusions.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions, and
some key results concerning linear and nonlinear nonnegative
dynamical systems [12], [22], [29], [30] that are necessary for
developing the main results of this paper. Specifically, for

we write (resp., ) to indicate that every
component of is nonnegative (resp., positive). In this case,
we say that is nonnegative or positive, respectively. Likewise,

is nonnegative1 or positive if every entry of is non-
negative or positive, respectively, which is written as
or , respectively. Let and denote the nonnegative
and positive orthants of ; that is, if , then and

are equivalent, respectively, to and .
Finally, we write to denote transpose, for the trace
operator, to denote the minimum eigenvalue of a Her-
mitian matrix, for a vector norm, for the Frobenius
matrix norm, and for the Fréchet derivative of at .
The following definition introduces the notion of a nonnegative
(resp., positive) function.

Definition 2.1: Let . A real function
is a nonnegative (resp., positive) function if (resp.,

) on the interval .
The next definition introduces the notions of essentially non-

negative matrices and compartmental matrices.

1In this paper it is important to distinguish between a square nonnegative
(resp., positive) matrix and a nonnegative–definite (resp., positive–definite)
matrix.

Definition 2.2 ([12], [22]): Let . is essentially
nonnegative if , , , . is compart-
mental if is essentially nonnegative and ,

.
Next, consider the controlled linear dynamical system

(1)

where

(2)

is essentially nonnegative and is non-
negative such that . The following theorem shows
that linear stabilizable nonnegative systems possess asymptot-
ically stable zero dynamics with viewed as
the output. For the statement of this result let denote
the spectrum of , let , and let

in (1) be partitioned as

(3)

where is essentially nonnegative,
is nonnegative, is nonnegative,

and is essentially nonnegative.
Theorem 2.1: Consider the linear dynamical system given

by (1) where is essentially nonnegative and parti-
tioned as in (3), and is nonnegative and is parti-
tioned as in (2) with . Then there exists a gain ma-
trix such that is essentially nonnegative
and asymptotically stable if and only if is asymptotically
stable.

Proof: First, let be partitioned as , where
and , and note that

Assume that is essentially nonnegative and asymptot-
ically stable and suppose, ad absurdum, is not asymptoti-
cally stable. Then, it follows from [12, Th. 3.1] that there does
not exist a positive vector such that .
Next, since is nonnegative it follows that

for any positive vector . Thus, there
does not exist a positive vector such that

and, hence, it follows from [12, Th. 3.1] that
is not asymptotically stable leading to a contradiction.

Hence, is asymptotically stable. Conversely, suppose
is asymptotically stable. Then taking
and , where is essentially nonnegative and
asymptotically stable, it follows that

and, hence, is
essentially nonnegative and asymptotically stable.

The following definition introduces the notion of essentially
nonnegative vector fields [12], [31].

Definition 2.3: Let , where
is an open subset of that contains . Then is essentially
nonnegative with respect to , , if

for all , and such that
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, , where denotes the th element of . is
essentially nonnegative if for all , and

such that .
In this paper we consider controlled time-varying nonlinear

dynamical systems of the form

(4)

where , , , ,
is continuous in and Lipschitz continuous in on

and satisfies , , and
.

The following definition and proposition are needed for the
main results of the paper.

Definition 2.4: The nonlinear dynamical system given by (4)
is nonnegative if for every and , ,
the solution , , to (4) is nonnegative.

Proposition 2.1: Consider the time-varying dynamical
system (4) where is Lipschitz continuous
on for all and is
continuous on for all . If for every ,

is essentially nonnegative and
is nonnegative, then the solution , ,

to (4) is nonnegative.
Proof: The result is a direct consequence of [12, Prop 7.1]

by equivalently representing the time-varying system (4) as an
autonomous nonlinear system by appending another state to
represent time. Specifically, defining and

, it follows that the solution , , to (4)
can be equivalently characterized by the solution , ,
where , to the nonlinear autonomous system

(5)

(6)

where and denote differentiation with respect to
and . Now, since , , whenever

for , and , ,
the result is a direct consequence of [12, Prop 7.1].

It follows from Proposition 2.1 that a nonnegative input signal
, , is sufficient to guarantee the nonnegativity

of the state of (4).

III. PARTIAL BOUNDEDNESS AND PARTIAL

ULTIMATE BOUNDEDNESS

In this section, we present Lyapunov-like theorems for par-
tial boundedness and partial ultimate boundedness of nonlinear
dynamical systems. These notions allow us to develop less
conservative ultimate bounds for neuro adaptive controllers as
compared to ultimate bounds derived using classical bounded-
ness and ultimate boundedness notions. Specifically, consider
the nonlinear autonomous interconnected dynamical system

(7)

(8)

where , is an open set such that ,
, is such that, for every

, and is locally Lipschitz in

, is such that, for every ,
is locally Lipschitz in , and ,

, is the maximal interval of existence for the
solution , , to (7), (8). Note that under
the previous assumptions the solution to (7), (8)
exists and is unique over . For the following definition
we assume that .

Definition 3.1:

i) The nonlinear dynamical system (7), (8) is bounded with
respect to uniformly in if there exists such
that, for every , there exists such
that implies , . The non-
linear dynamical system (7), (8) is globally bounded with
respect to uniformly in if, for every ,
there exists such that implies

, .
ii) The nonlinear dynamical system (7), (8) is ultimately

bounded with respect to uniformly in with ulti-
mate bound if there exists such that, for every

, there exists such that
implies , . The nonlinear

dynamical system (7), (8) is globally ultimately bounded
with respect to uniformly in with ultimate bound

if, for every , there exists
such that implies , .

Note that if a nonlinear dynamical system is (globally)
bounded with respect to uniformly in , then there exists

such that it is (globally) ultimately bounded with respect
to uniformly in with an ultimate bound . Conversely, if
a nonlinear dynamical system is (globally) ultimately bounded
with respect to uniformly in with an ultimate bound
, then it is (globally) bounded with respect to uniformly

in . The following results present Lyapunov-like theorems
for partial boundedness and partial ultimate boundedness. For
these results define , where

and
is a given continuously differentiable function. Furthermore,
let , , , denote the open ball centered at
with radius and let denote the closure of .

Theorem 3.1: Consider the nonlinear dynamical system (7),
(8). Assume there exist a continuously differentiable function

and class functions , such that

(9)

(10)

where is such that with . Then
the nonlinear dynamical system (7), (8) is bounded with respect
to uniformly in . Furthermore, for every ,

implies that , where

(11)

and . If, in addition,
and is a class function, then the nonlinear

dynamical system (7), (8) is globally bounded with respect to
uniformly in and for every , ,

, where is given by (11) with .
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Proof: First, let and assume . If
, , then it follows from (9) that

, . Alternatively, if there exists
such that , then it follows from the continuity

of that there exists such that and
, . Hence, it follows from (9) and (10)

that:

which implies that . Next, let and
assume and . Now, for every such
that , , it follows from (9) and (10) that

which implies that , . Next, if
there exists such that , then it follows as
in the proof of the first case given previously that

, . Hence, if , then
, . Finally, if and is a class

function it follows that is a class function and,
hence, . Hence, the nonlinear dynamical system (7), (8)
is globally bounded with respect to uniformly in .

Theorem 3.2: Consider the nonlinear dynamical system (7),
(8). Assume there exist a continuously differentiable function

and class functions , such that
(9) holds. Furthermore, assume that there exists a continuous,
positive–definite function such that ,

, and

(12)
where is such that with . Then
the nonlinear dynamical system (7), (8) is ultimately bounded
with respect to uniformly in with ultimate bound

. Furthermore, .
If, in addition, and is a class function, then
the nonlinear dynamical system (7), (8) is globally ultimately
bounded with respect to uniformly in with ultimate
bound .

Proof: First, let and assume .
As in the proof of Theorem 3.1, it follows that

, . Next, let , where
and assume

and . In this case, it follows from
Theorem 3.1 that , . Suppose,
ad absurdum, , , or, equivalently,

, . Since
is compact and is continuous and ,

, it follows from Weierstrass’ theorem [32,
p. 154] that exists. Hence, it follows
from (12) that:

(13)

which implies that

(14)

Now, letting it follows that which
is a contradiction. Hence, there exists

such that . Thus, it follows from
Theorem 3.1 that ,

, which proves that the nonlinear dynamical system
(7), (8) is ultimately bounded with respect to uniformly
in with ultimate bound . Furthermore,

. Finally, if and
is a class function it follows that is a class

function and, hence, . Hence, the nonlinear dynamical
system (7), (8) is globally ultimately bounded with respect to

uniformly in with ultimate bound .
The following result on ultimate boundedness of intercon-

nected systems is needed for the main theorems in this paper.
Proposition 3.1: Consider the nonlinear interconnected dy-

namical system (7), (8). If (8) is input-to-state stable with
viewed as the input and (7), (8) is ultimately bounded with re-
spect to uniformly in , then the solution ,

, of the interconnected dynamical system (7), (8) is ulti-
mately bounded.

Proof: Since (7), (8) is ultimately bounded with respect
to (uniformly in ), there exist positive constants and

such that , . Furthermore, since
(8) is input-to-state stable with viewed as the input, it follows
that is finite and, hence, there exist a class function

and a class function such that

(15)

which proves that the solution , , to (7), (8)
is ultimately bounded.

IV. NEURAL ADAPTIVE CONTROL FOR NONLINEAR

NONNEGATIVE UNCERTAIN SYSTEMS

In this section, we consider the problem of characterizing
neural adaptive feedback control laws for nonlinear nonnegative
and compartmental uncertain dynamical systems to achieve set-
point regulation in the nonnegative orthant. Specifically, con-
sider the controlled nonlinear uncertain dynamical system
given by

(16)

(17)

where , , and , , are the
state vectors, , , is the control input,

is essentially nonnegative with respect to
but otherwise unknown and satisfies , ,

is essentially nonnegative with respect
to but otherwise unknown and satisfies , ,
and is a known nonnegative input
matrix function. Here, we assume that we have control inputs
so that the input matrix function is given by

(18)
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where is a positive diagonal matrix and
is a nonnegative matrix function

such that , . The control
input in (16) is restricted to the class of admissible controls
consisting of measurable functions such that , .
In this section, we do not place any restriction on the sign of the
control signal and design a neuro adaptive controller that guar-
antees that the system states remain in the nonnegative orthant
of the state–space for nonnegative initial conditions and are ul-
timately bounded in the neighborhood of a desired equilibrium
point.

In this paper, we assume that and are unknown
functions with given by

(19)

where is a known essentially nonnegative matrix
and is an unknown essentially nonneg-
ative function with respect to and belongs to the uncertainty
set given by

(20)

where and is
an uncertain continuous function such that is essentially
nonnegative with respect to and is bounded for all

. Furthermore, we assume that for a given
there exist and such that

(21)

(22)

In addition, we assume that (17) is input-to-state stable at
with viewed as the input; that is, there exist a class

function and a class function such that

(23)

where denotes the Euclidean vector norm. Unless otherwise
stated, henceforth, we use to denote the Euclidean vector
norm. Note that is an equilibrium point
of (16), (17) if and only if there exists such that (21),
(22) hold. Furthermore, we assume that for a given ,
the th component of the vector function

can be approximated over a compact set
by a linear in the parameters neural network

up to a desired accuracy so that for , there exists
such that , , and

(24)

where , , are optimal unknown (constant)
weights that minimize the approximation error over ,

, , are a set of basis
functions such that each component of takes values be-
tween 0 and 1 and , , is bounded,

, , are the modeling errors,
and , where , , are bounds for the
optimal weights , . Since is continuous,
we can choose , , from a linear space of
continuous functions that forms an algebra and separates points
in . In this case, it follows from the Stone-Weier-
strass theorem [32, p. 212] that is a dense subset of the set of
continuous functions on . Now, as is the case in the
standard neuro adaptive control literature [6], we can construct
the signal involving the estimates of the
optimal weights as our adaptive control signal. However, even
though , , provide adaptive cancella-
tion of the system uncertainty, it does not necessarily guarantee
that the state trajectory of the closed-loop system remains in
the nonnegative orthant of the state space for nonnegative ini-
tial conditions. To ensure nonnegativity of the closed-loop plant
states, the adaptive control signal is assumed to be of the form

, , where is
such that each component of takes values between 0 and
1, , , is bounded, and
whenever for all . This set of functions
do not generate an algebra in and, hence, if used as an ap-
proximator for , , will generate additional
conservatism in the ultimate bound guarantees provided by the
neural network controller. In particular, since each component
of and takes values between 0 and 1, it follows
that:

(25)

This upper bound will be used in the analysis of Theorem 4.1 in
the following.

For the remainder of the paper we assume that there exists
a gain matrix such that is essentially
nonnegative and asymptotically stable, where and have the
forms of (3) and (2), respectively. Now, partitioning the state in
(16) as , where and , and
using (18), it follows that (16) and (17) can be written as

(26)

(27)

(28)

Thus, since is essentially nonnegative and asymp-
totically stable, it follows from Theorem 2.1 that the solution

of (27) with ,
where and satisfy , is globally
exponentially stable and, hence, (27) is input-to-state stable at
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with viewed as the input. Thus, in this
paper we assume that the dynamics (27) can be included in (17)
so that . In this case, the input matrix (18) is given by

(29)

so that . Now, for a given desired set point
and for given , our aim is to design a

control input , , such that and
for all , where , and

and for all and .
However, since in many applications of nonnegative systems
and in particular, compartmental systems, it is often necessary
to regulate a subset of the nonnegative state variables which
usually include a central compartment, here we only require that

, .
Theorem 4.1: Consider the nonlinear uncertain dynamical

system given by (16) and (17) where and are
given by (19) and (29), respectively, is essentially non-
negative with respect to , is essentially nonnegative
with respect to , and is essentially nonnegative with re-
spect to and belongs to . For a given assume there
exist nonnegative vectors and such that (21)
and (22) hold. Furthermore, assume that (17) is input-to-state
stable at with viewed as the input. Fi-
nally, let be such that is nonnegative and

is essentially nonnegative and asymptotically
stable, and let and , , be positive constants.
Then the neural adaptive feedback control law

(30)

where ,
, , , and

with
whenever , , with update law

(31)

where satisfies

(32)

for a positive–definite matrix , guaran-
tees that there exists a compact, positively invariant set

such that ,
where , and the solution , ,
of the closed-loop system given by (16), (17), (30), and (31)

Fig. 1. Block diagram of the closed-loop system.

is ultimately bounded for all with
ultimate bound , , where

(33)

, and

(34)

Furthermore, and for all and
.

Proof: The proof is given in the Appendix.
Remark 4.1: In the case where the neural network approx-

imation holds in , the assumptions and
invoked in the proof of Theorem 4.1 given in the

Appendix are automatically satisfied. Furthermore, in this case
the control law (30) ensures global ultimate boundedness of the
error signals. However, the existence of a global neural network
approximator for an uncertain nonlinear map cannot in general
be established. Hence, as is common in the neural network lit-
erature, for a given arbitrarily large compact set

, we assume that there exists an approximator for the
unknown nonlinear map up to a desired accuracy. This assump-
tion ensures that in the error space (see the Appendix) there
exists at least one Lyapunov level set such that . In
the case where is continuous on , it follows
from the Stone-Weierstrass theorem that can be approxi-
mated over an arbitrarily large compact set . In this
case, our neuro adaptive controller guarantees semiglobal ulti-
mate boundedness; that is, can be arbitrarily increased. An
identical assumption is made in the proof of Theorem 5.1 given
in the Appendix.

A block diagram showing the neuro adaptive control ar-
chitecture given in Theorem 4.1 is shown in Fig. 1. It is
important to note that the adaptive control law (30), (31) does
not require the explicit knowledge of the optimal weighting
matrix and constants and . All that is required
is the existence of the nonnegative vectors and such
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that the equilibrium conditions (21) and (22) hold. Further-
more, in the case where is an unknown positive diagonal
matrix, we can take the gain matrix to be diagonal so that

, where , , are
positive. In this case, taking in (19) to be the zero matrix,
is given by which is clearly
essentially nonnegative and asymptotically stable. Further-
more, any satisfies (32). Finally, it is
important to note that the control input signal , , in
Theorem 4.1 can be negative depending on the values of ,

, and , . However, as is required for nonnegative
and compartmental dynamical systems the closed-loop plant
states remain nonnegative.

Next, we generalize Theorem 4.1 to the case where the input
matrix is not necessarily nonnegative. For this result
denotes the th row of .

Theorem 4.2: Consider the nonlinear uncertain dynamical
system given by (16) and (17) where and
are given by (19) and (29), respectively, (with not
necessarily nonnegative) is essentially nonnegative with
respect to , is essentially nonnegative with respect
to , and is essentially nonnegative with respect to
and belongs to . For a given assume there exist
a nonnegative vector and a vector such
that (21) and (22) hold with . Furthermore,
assume that (17) is input-to-state stable at with

viewed as the input. Finally, let
be such that , , and

is essentially nonnegative and asymptotically
stable, and let and , , be positive constants.
Then the neural adaptive feedback control law (30), where

, ,
, , and

with whenever , , with update
law

(35)

where satisfies (32), guar-
antees that there exists a compact, positively invariant set

such that ,
where , and the solution , ,
of the closed-loop system given by (16), (17), (30), and (35)
is ultimately bounded for all with
ultimate bound , , where is
given by (33). Furthermore, and for all

and .
Proof: The proof is identical to the proof of

Theorem 4.1 given in the Appendix with replaced by
.

Finally, in the case where is an unknown diagonal matrix
but the sign of each diagonal element is known, we can take the
gain matrix to be diagonal so that ,
where is such that , . In this
case, taking in (19) to be the zero matrix, is given by

which is essentially nonnegative
and asymptotically stable.

V. NEURAL ADAPTIVE CONTROL FOR NONLINEAR

NONNEGATIVE UNCERTAIN SYSTEMS WITH

NONNEGATIVE CONTROL

As discussed in the Introduction, control (source) inputs of
drug delivery systems for physiological and pharmacological
processes are usually constrained to be nonnegative as are the
system states. Hence, in this section, we develop neuro adap-
tive control laws for nonnegative systems with nonnegative con-
trol inputs. Specifically, for a given desired set point

and for given , our aim is to design a non-
negative control input , , such that
and for all , where ,
and and for all and

. However, since in many applications of nonnega-
tive systems and in particular, compartmental systems, it is often
necessary to regulate a subset of the nonnegative state variables
which usually include a central compartment, here we only re-
quire that , . Furthermore, we assume that
we have independent control inputs such that the input matrix
function is given by ,
where , . For compartmental
systems this assumption is not restrictive since control inputs
correspond to control inflows to each individual compartment.

Theorem 5.1: Consider the nonlinear uncertain dynamical
system given by (16) and (17) where and are
given by (19) and (29), respectively, is essentially nonnega-
tive and asymptotically stable, is essentially nonnegative
with respect to , is essentially nonnegative with respect
to , and is essentially nonnegative with respect to and
belongs to . For a given assume there exist positive
vectors and such that (21) and (22) hold
and the equilibrium point of (16), (17) is
globally asymptotically stable with . Furthermore, as-
sume that (17) is input-to-state stable at with
viewed as the input. Finally, let and , , be pos-
itive constants and , , be nonpositive constants.
Then the neural adaptive feedback control law

(36)

where

(37)

and , , , with update law

(38)

where satisfies

(39)

for a positive–definite matrix , guaran-
tees that there exists a compact, positively invariant set

such that ,
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where , and the solution , ,
of the closed-loop system given by (16), (17), (36), and (38)
is ultimately bounded for all with
ultimate bound , , where

(40)

, and

(41)

Furthermore, , , and for all
and .

Proof: The proof is given in the Appendix.
In Theorem 5.1 we assumed that the equilibrium point

of (16), (17) is globally asymptotically stable with
. In general, however, unlike linear nonnegative

systems with asymptotically stable plant dynamics, a given
set point for the nonlinear nonnegative
dynamical system (16), (17) may not be asymptotically stabi-
lizable with a constant control . However, if

, where , is homo-
geneous, cooperative; that is, the Jacobian matrix is
essentially nonnegative for all [33], the Jacobian

matrix is irreducible for all [33], and
the zero solution of the undisturbed
system (16), (17) is globally asymptotically stable, then the set
point satisfying (21), (22) is a unique
equilibrium point with and is also asymptoti-
cally stable for all [34]. This implies that
the solution to (16), (17) with
is asymptotically stable for all .

It is important to note that unlike Theorem 4.1, Theorem 5.1
does not require that the set of basis functions ,

, be essentially nonnegative nor satisfy
whenever , . This is due to the fact that the
control input is constrained to be nonnegative and, hence, the
neuro adaptive controller given by Theorem 5.1 cannot destroy
nonnegativity of the closed-loop plant states.

VI. NEURAL ADAPTIVE CONTROL FOR CONTINUOUS

STIRRED TANK REACTORS

In this section, we apply the proposed neuro adaptive control
framework to temperature regulation of chemical reactors. In
particular, we consider a perfectly mixed, continuously stirred
tank reactor shown in Fig. 2 involving a single, first-order
exothermic (i.e., energy releasing) irreversible reaction .
The model involves fluid streams that are continuously fed and
removed from the reactor. Since we assume perfect mixing
in the reactor, the exit stream has the same concentration
and temperature as the reactor fluid. Furthermore, the jacket
surrounding the reactor is assumed to be perfectly mixed and

Fig. 2. Exothermic continuously stirred tank reactor.

at a lower temperature than the reactor. In this case, energy (in
the form of heat) transfers through the reactor walls into the
jacket, removing the heat generated by the reaction. A mass
and energy balance of the reactor, assuming constant volume,
heat capacity, and density, yields [35]–[38]

(42)

(43)

where is the concentration of reactant in the reactor ef-
fluent in mols/liter, is the concentration of reactant in
the feed stream in mols/liter, is the reactor temperature
in degrees Kelvin, is the jacket temperature in degrees
Kelvin, is the feed temperature in degrees Kelvin, is the
constant feed flow rate in liters/min, is the reactor volume
in liters, is the heat of reaction in Joules/mol, is the
density in grams/liter, is the specific heat in

, is the heat transfer term in ,
and is the rate of reaction satisfying Arrhenius’ law
given by

(44)

where is the rate constant in , is the activa-
tion energy in Joules/mol, and is the ideal gas constant in

.
Due to the exponential nonlinearity in , the non-

linear kinetic (42), (43) can exhibit multiple equilibria, limit cy-
cles, and chaos for fixed jacket temperatures. Here, our control
objective is to regulate the reactor temperature to a pre-
scribed set point by controlling the jacket temperature .
Note that with , , and , (42) and (43) can
be written in state-space form (16) and (17) with

(45)

(46)

(47)



HAYAKAWA et al.: NEURAL NETWORK ADAPTIVE CONTROL FOR NONLINEAR NONNEGATIVE DYNAMICAL SYSTEMS 407

TABLE I
SYSTEM PARAMETER VALUES [39]

where , , ,
, and . Note that and

are essentially nonnegative with respect to and , respectively
and, hence, it follows from [12, Prop. 7.1] that the state tra-
jectory of (42) and (43) remain in the nonnegative orthant of
the state–space for nonnegative initial conditions and a nonneg-
ative input. We assume that there exists an equilibrium point

so that (21) and (22) are satisfied [37]. Fur-
thermore, we assume that the system kinetics are uncertain with
respect to the temperature as well as , , and are
uncertain parameters.

To see that (43) is input-to-state stable with viewed as
the input, define and so
that is given by

(48)

Now, defining and noting that
is bounded, it follows that

(49)

which shows that , , is input-to-
state stable with viewed as the input. Hence, it follows from
Theorem 5.1 that the adaptive feedback controller (36) with up-
date law (38) guarantees that the closed-loop system is ulti-
mately bounded and, hence, there exist positive constants and

such that , , for all (uncertain) positive
system parameters , , , and all (uncertain) contin-
uous rate of reaction .

For our simulation, we choose the system parameters given
in Table I. With ,

, , , and initial conditions
, , and , Fig. 3 shows the

state trajectories (i.e., reactor temperature and concentration of

Fig. 3. State trajectories (reactor temperature and concentration of reactant A)
and control signal (jacket temperature) versus time.

Fig. 4. Neural network weighting functions versus time.

reactant A) versus time and the control signal (i.e., jacket tem-
perature) versus time. Finally, Fig. 4 shows the neural network
weight history versus time.

VII. CONCLUSION

Nonnegative and compartmental systems are widely used
to capture system dynamics involving the interchange of mass
and energy between homogenous subsystems or compartments.
In this paper, we developed a neural adaptive control frame-
work for adaptive set-point regulation of nonlinear uncertain
nonnegative and compartmental systems. Using Lyapunov-like
methods the proposed framework was shown to guarantee
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ultimate boundedness of the error signals corresponding to
the physical system states and the neural network weighting
gains while additionally guaranteeing the nonnegativity of the
closed-loop system states associated with the plant dynamics.
We then generalized our neuro adaptive controller to address
the problem of nonnegative systems with nonnegative control
inputs. This generalization is crucial for physiological, pharma-
cological, and chemical processes as control inputs are usually
constrained to be nonnegative.

APPENDIX

To prove Theorem 4.1, note that with , , given by
(30) it follows from (16), (19), and (29) that:

(50)

Now, defining and , using
(20)–(22), and noting that , it follows from (17)
and (50) that:

(51)

and

(52)

where and
is a basis function satis-

fying (24). Furthermore, since is essentially nonnegative and
asymptotically stable, it follows from [12. Th. 3.3] that there
exist a positive diagonal matrix and a
positive–definite matrix such that (32) holds.

Next, to show ultimate boundedness of the closed-loop
system (31), (51), and (52) consider the Lyapunov-like function

(53)

where

, ,

and . Note that
(53) satisfies (9) with ,

, , where
. Furthermore, is

a class function. Now, letting , , denote the
solution to (51) and using (24), (25), and (31), it follows that
the time derivative of along the closed-loop
system trajectories is given by (54), shown at the bottom of the
page. Next, completing squares yields

(54)
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(55)

where is given by (34). Now, for

(56)

or

(57)

it follows that for all ; that
is, for all

and , where

(58)

(59)

Next, define

(60)

where is the maximum value such that , and define

(61)

where

(62)

To show ultimate boundedness of the closed-loop system (31),
(51), and (52), assume2 that (see Fig. 5). Now,
since for all and

, it follows that is positively invariant. Hence, if
, then it follows from Theorem 3.1

that the solution , , to (31), (51), and
(52) is bounded with respect to uniformly in
and, hence, ultimately bounded with respect to uni-
formly in . To show that , ,
note that is also positively invariant and, hence, if there
exists such that , then

, . Alternatively, suppose
the solution , , to (31), (51), and (52)
remains in . In this case, the Lyapunov-like function
(53) is nonincreasing. Furthermore, it follows from (54) that
(63), shown at the bottom of the next page, where

(64)

(65)

Note that since and are bounded and the state
trajectory is bounded, it follows from (31),

2This assumption is standard in the neural network literature and ensures that
in the error space ~D there exists at least one Lyapunov level set ~D � ~D .
In the case where the neural network approximation holds in � , this
assumption is automatically satisfied. See Remark 4.1 for further details.

(63)
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(51), (52) that , , are also bounded and, hence,
is bounded. Thus, it follows from Bar-

balat’s lemma [40, p. 192] that as
. Now, it follows from (55) that, since the quantity in

the brackets in the right-hand side of (55) is strictly positive in
, as . Hence, in either case,

there exists such that , ,
with which yields (33).

Next, since (52) is input-to-state stable with viewed
as the input, it follows from Proposition 3.1 that the solu-
tion , , to (52) is ultimately bounded and, hence,
the solution , , of the closed-loop
system (16), (17), (30), and (31) is ultimately bounded for all

. Furthermore, it follows from [41,
Th. 1] that there exist a continuously differentiable, radially
unbounded, positive–definite function and class

functions such that

(66)
Since the upper bound for is given by , it follows
that the set given by:

(67)
is also positively invariant as long as3 . Now, since

and are positively invariant, it follows that:

(68)

is also positively invariant.
Finally, to show that and , , for

all note that the closed-loop system (16),
(30), and (31), is given by

(69)

where

Since , , is essentially nonnegative with respect
to pointwise-in-time, is essentially nonnegative with
respect to , and , it follows from Proposition 2.1 that

, , and , , for all
.

To prove Theorem 5.1, first define
and

, where

if ,
otherwise,

(70)

if ,
otherwise,

(71)

3See Remark 4.1.

Fig. 5. Visualization of sets used in the proof of Theorem 4.1.

Next, note that with , , given by (36) it follows from
(16), (19), and (29) that:

(72)

Now, defining and , and
using (20)–(22), it follows from (17) and (72) that:

(73)

and

(74)

where . Fur-
thermore, since is essentially nonnegative and asymptotically
stable, it follows from [12, Th. 3.3] that there exist a positive
diagonal matrix and a positive–definite
matrix such that (39) holds.

Next, to show ultimate boundedness of the closed-loop
system (38), (73), and (74) consider the Lyapunov-like function

(75)

where

and

with given by .
Note that (75) satisfies (9) with ,

, , where
. Furthermore, is

a class function. Now, letting , , denote the
solution to (73) and using (24) and (38), it follows that the
time derivative of along the closed-loop system
trajectories is given by (76), shown at the bottom of the next
page. Now, for each and for the two cases
given in (70), the last term on the right-hand side of (76) gives:
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1) If , then and, hence

2) Otherwise, and, hence

Hence, it follows from (76) that in either case (77), shown at the
top of the next page. Next, completing squares yields

(78)

where

and . Now, for

(79)

(76)
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(77)

or

(80)

it follows that for all ; that
is, for all

and , where and are given by (58) and
(59), respectively. Now, the proof follows as in the proof of
Theorem 4.1.
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