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Abstract

A direct adaptive nonlinear control framework for
discrete-time multivariable nonlinear uncertain systems
with exogenous bounded disturbances is developed. The
adaptive nonlinear controller addresses adaptive stabiliza-
tion, disturbance rejection, and adaptive tracking. The
proposed framework is Lyapunov-based and guarantees
partial asymptotic stability of the closed-loop system;
that is, asymptotic stability with respect to part of
the closed-loop system states associatedp with the plant.
Finally, two il{)ustrative numerical examples are provided
to demonstrate the efficacy of the proposed approach.

1. Introduction

In a recent series of papers [1,2], a direct adap-

tive control framework for adaptive stabilization, distur-
bance rejection, and command following of multivariable
continuous-time nonlinear uncertain systems with exoge-
nous bounded amplitude disturbances was developed. In
this paper we develop analogous results for discrete-time
nonlinear uncertain systems. Specifically, a Lyapunov-
based direct adaptive control framework is developed that
guarantees partial asymptotic stability of the closed-loop
system; that is, asymptotic stability with respect to part
of the closed-loop system states associated with the plant.
Furthermore, in the case where the nonlinear system is
represented in normal form with input-to-state stable zero
dynamics, the nonlinear discrete-time adaptive controller
is constructed without requiring knowledge of the system
dynamics or system disturbance.

In the paper we use the following standard notation. Let
R denote the set of real numbers, let R™ denote the set of

nx 1 real column vectors, let ()T denote transpose, let (X}
denote the Moore-Penrose generalized inverse, and let

denote the set of nonnegative integers. Furthermore, we
write Ayin(M) (resp., Amax(M)) for the minimum (resp.,
maximum) eigenvalue of the Hermitian matrix M, tr(-) for
the trace operator, and In(-) for the natural log operator.

2. Discrete-Time Adaptive Control for Nonlinear
Systems with Exogenous Disturbances

In this section we consider the problem of character-
izing adaptive feedback control laws for nonlinear uncer-
tain discrete-time systems with exogenous disturbances.
Specifically, consider the following controlled nonlinear
uncertain discrete-time system G given by

a(k+1) = f(z(k)) + Gz(k))u(k) + J(z(k))w(k),
1(0):“:07 kENv (1)

where z(k) € R™, k € N, is the state vector, u(k) € R™,
k € N, is the control input, w(k) € R?, k € N, is a
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known bounded disturbance vector such that |Jw(k)]||s < 4,
ke N, f:R* —» R" and satisfies f(0) = 0, G : R* —
R™™™ and J : R® — R"*4 is a disturbance weighting
matrix function with unknown entries. The control input
u(+) in (1) is restricted to the class of admissible controls

cons/i\s/j:ing of measurable functions such that u(k) € R™,
keN.

Theorem 2.1. Consider the nonlinear system G given
by (1). Assume there exists a matrix K; € R™*® and -
functions G : R® — R™*™ and F : R® — R? such that
detG(z) # 0,z € R",

FT(2)F(z) < 22Tz, = eR", (2)

where 4 > 0, and the zero solution z(k) =0 to

z(k+1) = f(z(k)) + G(z(k))G(z(k) K F (x(k))

fe(z(K)), keN, 3)

is globally asymptotically stable. Furthermore, assume
there exists a matrix ¥ € R”™*¢ such that G(z)G(z)¥ =
J(z). In addition, assume there exist functions V; : R® —
R, Pz : R —» R™™ ¢ :R™ — R?, and a nonnegative-
definite matrix function Pz : R® — R™*™ such that
Pyu(x) < yIp, z € R™, v > 0, Vi(') is continuous, positive
definite, V5(0) = 0, and, for all z € R™ and @ € R™,

>l

z(0) = zo,

Va(f() + G(z)G(z)@) .
= Vs(f(.’l,‘)) + Pm(x)ﬁ. + ’&TPQg (.’E)ﬂ, (4)
0 > Vi(fe(x)) — Va(z) + £¥(2)e(z) + SPw(w)PlTﬁ(?E),)
5
Vi(z) > paTz, (6)

where € € R and p € R are positive constants. Finally,
let #(k) 2 [FT(x(k)), wT(k)]T and Q € R™*™ be posi-
tive definite such that Apmax(Q) < 2. Then the adaptive
feedback control Jaw

u(k) = G(z(k))K (k)Z(k), ()
where K (k) € R™*(s+9) k€ N, with update law

K(k+1) = K(k) ~ QG (z(k))G" ((k))
fa(k + 1) — fe(z(k))ET(K), = (8)

guarantees that the solution (z(k), K(k)) = (0, [Kg, —¥])
of the closed-loop system given by (1), (7), and (8) is Lya-
punov stable and £(z(k)) — 0 as t — oo. If, in addition,
ZT(a:)]ﬁ(z) >0,z £ 0, then z(k) — 0 as k¥ — oo for all
zgo € R™. :
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Proof. First, define K(k) 2 K(k) — K, and a(k) £
K(k)Z(k), where K; 2 [K,, —¥]. Note that with u(k),
k € N, given by (7) it follows from (1) that

z(k+1) = f(z(k)) + G(z(k)G(z(k)K
+J(z(k))w(k), z(0) = zo,

(k)Z(k)
keWN, (9)

or, equivalently, using (3) and the fact that G(z)G(z)¥ =
J(z),

fe(z(k)) + G(x(k))G(z(k) K (k)z(k)

fe(z(k)) + G(z(k))C (k)i ( ),
z(0) = zo, ke N.(10)

z(k+1)

el

Furthermore, note that by subtracting Kg from the both
sides of (8) and using (10) it follows that

K (k) - QG (k)G (z(k))

1G((R)G (k)R (R0 (k)
K(k) - QR(6)2(K)3 (k). (1)

To show Lyapunov stability of the closed-loop system (10)
and (11), consider the Lyapunov function candidate

K(k+1)

[

V(z, K) = In(1+Vi(z)) +atr (K — Kg)TQ(K — K), (12)

where a is a positive constant. Note that V(0,K;) = 0
and, since V;(-) and @ are positive definite, V(z,K) > 0
for all (x, K) # (0, K,). Furthermore, V(z, K) is radially
unbounded. Now, letting z(k), k € N, denote the solu-

tion to (10) and using (4? (5), and (11), it follows that
the Lyapunov difference along the closed-loop system tra-
jectories is given by

AV (z(k), K(k))

L2 V(zk+1),K(k+1)) — V(z(k), K(k))
In(1 + Vi(fe(2(k)) + G(=(k))G(z(k))i(k)))
+atr (K K (k) - QK (k)i (k)z! (k)TQ ™
(K (k) - QK (k)Z(k)' (k)

—In(1 + Vi(z(k))) — atr KT (k)Q K (k)
n(1+ [Velfe(@(k)) + Pra(a(k))a(k)

@™ (k) Paa(z(k))a(k) — Va(a (k)] [+ Va((k))] ")
+atr KT (k)Q 1K (k) — 2atr KT (k)K (k)z(k)E! (k)
+atr (2(k)2T (k))TKT (k)QK (k)z(k)zt (k)

—atr KT(k)Q 1K (k)

<

k)u(k
subtracting - T_,_J‘/‘(xﬁ((;c‘)l)v

collecting terms yields

AV (a(k), K (K)
CaE)am) 1
- 14+ Vi(z(k)) 1+ Vi(z(k))
(Pt TR0 | o A
LaT(k)a(k) +yaTa
1+ Vi(x(k))
+azH ()R T (RIQK (RZ(K) (! (R)2(H)]

k € N, to and from (13) and

u(ﬂﬂ(l’f))]

3G

(k)

— 2azt (K) KT (k) K (k)i (k)

< LT (z(K))(2(K))
= 1+ Vi(z(k))
_ERETRREE), wE) K (RER) "
T (k)z(k)(1 4 Vs(z(k))) ’
where

1
R(z,w) £ a(1 + Vi(z))(2] — Q) — ( + ’y) z°z. (15)
Noting that 21 — Q > 0, since Apax(@) < 2, and taking
1 =2
et Y
> —45—~max{5,—},
T Amin(2I - Q) 7
it follows that
R(z,w)

Q

> a(l + pzTz)(2I — Q)
(g +7) F"@F@ +9)
a(1 + pzTz)(2I — Q)

(1 2. T
(E—%'y) (FPz'z +6)

> 0.

v

(16)
Hence the Lyapunov difference given by (13) yields

; T (x(k))e(x(k))
< AN\

AV ), K () < ~555000s
<0, 17)
which proves that the solution (z(k), K (k)) = (0, Kg) to
(8) and (10) is Lyapunov stable. Furthermore, it follows
from (the discrete-time version of) Theorem 4.4 of [3] that
£(z(k)) — 0 as t — oco. Finally, if £T(x)f(z) > 0, = # 0,
then z(k) — 0 as t — oo for all zp € R™. O

Remark 2.1. Theorem 2.1 is also valid for time-
varying uncertain systems G; of the form

Lﬁ Yol (2N — e P - (2 (NPT (2(k))
-~

+Pya(z(k))a(k) +yit (k
—2a&! (k)K" (k) K (k)E(k)

+atr 2(k)z! (k) KT (k)QK (k)Z (k)3 (k), (13)

where in (13) we used Ina —Inb=In% andIn(1 +¢) <c
for a,b > 0 and ¢ > 0, respectively. Now, adding and

u(k) (k)] [+ Va(@ (k)] " z(k +1) = f(k,z(k)) + G(k, z(k))u(k) + J (k, z(k))w(k),

z(0) =xzo, k€N, (18)

where f: R x R™ — R” and satisfies f(k,0) =0, £ € N,
G:RxR* = R"™™, and J : R x R® — R™*¢, In partic- -
ular, replacing F : R® — R* by F : R x R* — R* where
F(k,0) = 0, k € N, and requiring FT(k,z)F(k,z) <
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32zTz, k € N, z € R", in place of (2), G R 5 Rmxm
by G : RxR"™ — R™*™ and requiring G(k,z)G(k,z)¥ =
J(k,z) in place of G(z)G(z)¥ = J(x), it follows by using
identical arguments as in the proof of Theorem 2.1 that
the adaptive feedback control law

u(k) = G(k, (k) K (k)& (k), (19)

where z(k) £ [FT(k,z(k)), wT (k)]T, with update law
K(k+1) = K(k) - QG (k,z(k))G' (k,z(k))
[zl + 1) = fe(a(k)))z (k),

where f.(z) = f(k,z) + G(k,2)G(k,z)K F(k,x), guar-
antees that the solution (z(k), K(k)) = (0, [K,, —¥]) of
the closed-loop system (18)—(20) is Lyapunov stable and
z(k) = 0 as t — oo for all o € R™.

(20)

Remark 2.2. It follows from Remark 2.1 that Theo-
rem 2.1 can also be used to construct adaptive tracking
controllers for nonlinear uncertain systems. Specifically,
let 7q(k) € R™, t > 0, denote a command input and define
- the error state e(k) £ x(k) — rq(k). In this case, the error
dynamics are given by

e(k+1) = fi(k,e(k)) + G(k,e(k))u(k)
+Ji(k, e(k))w(k), e(0) = eo, k € N, (21)

where fi(k,e(k)) = f(e(k)+ra(k))—n(k), with f(ra(k)) =
n(k), and Je(k,e(k))wi(k) = n(k) — ra(k + 1) +
J(k,e(k))w(k). Now, the adaptive tracking control law
(19) and (20), with z(k) replaced by e(k), guarantees that
e(k) — 0 as t — oo for all g € R™.

It is important to note that the adaptive control law (7)
and (8) does not require explicit knowledge of the gain

matrix K, the disturbance matching matrix ¥, the dis- -

turbance weighting matrix function .{Jﬁz), and the positive
constants v, ¥, € and p; even though Theorem 2.1 requires
the existence of K, F(z), G(z), and ¥ such that the zero
solution z(k) = 0 to (3) is globally asymptotically sta-
ble and the matching condition G(z)G(z)¥ = J(z) holds.
Furthermore, if (1) is in normal form with asymptotically
stable internal dynamics [4] and if fT(z)f(z) < 4%z z,
z € R*, 4 > 0, then we can always construct a function
F : R® — R? such that the zero solution z(k) = 0 to
(3) is globally asymptotically stable and (2) holds without
requiring knowledge of the system dynamics. (For sim-
plicity of exposition in the ensuing discussion we assume
that J(z) = D, where D € R"*¢ is a disturbance weight-
ing matrix with unknown entries.) To see this assume
that the nonlinear uncertain system G is generated by the
difference model

2k +7) = fui(z(k)) + ) Gagi jy(2(k))u; (k)
j=1

d
+Zb(i,l)wl(k), z(0) = 2o,
=1

i=1,---,m,

keN,
(22)
where 7; denotes the time delay (or relative degree) with

respect to the output z;, fu;(2(k)) = fu;(z1(k),- -+, z1(k+
Ty — l)a Tty Zm(k)y ) Z’m(k + Tm — 1))7 Gs(i,j)(z(k)) =

Gugoy(21(k), -, sa (kb =1), 2 (K), -, 2 (kb T
1)), Dy €R,i=1,---,m, L =1,---,d, and wi(k) € R,

ke N,1=1,---,d Here, we assume that the square
matrix function Gs(z) composed of the entries Gs; j)(2),

i,j =1,---,m, is such that det G5(z) # 0, z € R, where
# =7y + -+ 7. Furthermore, since (22) is in a form
where it does not possess internal dynamics, it follows that
7 =n.

Next, define z;(k) 2 [z(k), -, zi(k+7 —2)T, i =
Lo ,m, (k) 2 [za(k+ 711 — 1), -, 2 (k47— 1T,
and z(k) £ [z](k),- -, 25,1 (K)]T, so that (22) can be
described by (1) with

1) = e+ L), 6@ = | Ygmim |, @)

J@) = D= [ °<"-5>Xd ] (24)

where
1 A r3 On—mx
i=lom | R@=[ 5],

Ap € R(»=™)x7 j5 4 known matrix of zeros and ones cap-
turing the multivariable controllable canonical form rep-
resentation [5], fu : R® — R™ is an unknown function

and satisfies f(z)fu(z) < v2xTz, z € R™, where v, > 0,

Gs : R* — R™*™ and D € R™*4, Here, we assume that
fu(z) is unknown and is parameterized as f,(z) = O f,(z),
where f, : R® — R? and satisfies f (z)fa(z) < 227z,
z € R*, v, > 0, and © € R™*? is a matrix of uncertain
constant parameters.

Next, to apply Theorem 2.1 to the uncertain system
(1) with f(zf, g(z), and D given by (23) and (24), let .
K, € R™*?, where s = g+ r, be given by

K,=[{©6,-6,%,], (25)
where ©, € R™*7 and &, € R™*" are known matrices,

and let
7= 7o |

where f, : R® — R" and satisfies fE (@) folz) < 42z,
z € R", 4u > 0, is an arbitrary function. In this case, it
follows that, with G(z) = G (z),

fe(x) = f(z) + G(2)G(z) K F(2)
ot hier+ [ G5 o
. [ enfn(z) —efn(z) + ‘I)nfn(x) ]

- ~I O(nom)xlA ]
A +[enfn(x)+<1>nfn(a:) '

Note that, with G(z) = G71(z), ¥ in Theorem 2.1 can
be taken as ¥ = D so that G(z)G(z)¥ = J(z) = D is
satisfied, and (2) is satisfied with % > 42 + 42.

Now, since 8, € R™*? and ®, € R™*" are arbitrary

constant matrices and fo:R* 5 R"is an arbitrary func-
tion we can always construct K, and F(z) without knowl-
edge of f(x) such that the zero solution z(t) = 0 to (3)

(26)

Il

(27)
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can be made globally asymptotically stable. Ip particu-
lar, choosing 8y, fo(z) + ®pn fu(z) = Az, where A € R™*",
it follows that (27) has the form f.(z) = A.z, where

.onT
A = [AE,AT] is in multivariable controllable canon-

ical form. Hence, in the case where G(z)G(z) = B is a

constant matrix, by choosing A such that A, is asymp-
totically stable it follows that for sufficiently small € there
exists a positive-definite matrix P satisfying the following
Riccati-type inequality

0> ATPA.— P+ R+4cATPBBTPA,, (28)
where R is positive definite. In this case, with Lya-
punov function V,(z) = 2T Pz, (4)-(6) are satisfied with
Plﬁ(I) = 2$TA3PB, Pzﬁ(r) = BTPB, and H < )\min(P),
and hence the adaptive feedback controller (7) with up-
date law (8) guarantees global asymptotic stability of the
nonlinear uncertain discrete-time dynamical system (1)
where f(z), G(z), and J(z) are given by (23) and (24).
As mentioned above, it is important to note that it is not
necessary to utilize a feedback linearizing function F(z)
to produce a linear f.(z). However, when the system is in
normal form, a feedback linearizing function F(z) assures
the existence of V;(z) that satisfies the conditions (4) and
(5). In particular, choosing ©,, = ®, = 0, it follows that

GD1) = [ Ometumy G4 ]| o220 |2 =0,

mXxXn

Vand hence the update law (8) can be simplified as
K(k+1) = K(k) — QG (z(k))G! (z(k))z(k + 1)z} (k).
(29

Finally, note that Theorem 2.1 is not restricted to systems
with sector-bounded nonlinearities so long as the regressor

function F(z) satisfies (2) and we can construct a known
function f.(x) such that the zero solution z(k) = 0 to (3)
is globally asymptotically stable.

Next, we consider the case where f(z) and G(z) are
uncertain. Specifically, we assume that Gs(z) is un-
known and is parameterized as Gs(z) = B,G,(z), where
-Gy : R* — R™*™ js known and satisfies det G,(z) #
0, z € R*, and B, € R™*™ with detB, # 0 and
Omax(By) < 2, is an unknown symmetric sign definite
matrix but the sign definiteness of B, is known; that
is, By > 0 or B, < 0. For the statement of the next
result define B, £ [Omx(n_m), Im]T for B, > 0, and

T
Bo £ [0px(n~m), —Im]~ for B, <O0.

Corollary 2.1. Consider the nonlinear system G given
by (1) with f(z), G(z), and J(z) given by (23) and (24),
and Gs(z) = B,Gn(z), where B; is an unknown sym-
metric matrix and the sign definiteness of B, is known.
Assume there exists a matrix K; € R™*° and a function
F : R® — R® such that the zero solution z(k) = 0 to
(3) is globally asymptotically stable and (2) holds. Fur-
thermore, assume there exist functions V; : R* — R,
P : R* — RI*m ¢ : R* — RY and a nonnegative-
definite matrix function Pz : R* — R™X™ such that
Pyi(z) < ylm, z € R*, v > 0, V,(') is continuous, positive
definite, V;(0) = 0, and, for all z € R™ and u € R™, (4)-

(6) hold. Finally, let #(k) 2 [FT(z(k)), wT(k)]T. - Then

the adaptive feedback control law

u(k) = G (z(k))K (k) (k), (30)
where K (k) € R™*(+d) k¢ N, and (k) £ [FT(z(k)),
wT (k)]T, with update law

K(k+1) = K(k) - By le(k + 1) — fo(e(k)))z" (k), (31)

guarantees that the solution (z(k), K (k)) = (0, [Kg, —¥}),
where ¥ € R™*9 of the closed-loop system given by (1),

§30), and (311l£ is Lyapunov stable and z(k) — 0 as k — oo
or all zo € R".

Proof. The result is a direct consequence of Theo-
rem 2.1. First, let G(z) = G7Y(z) and ¥ = B;1D so
that G(2)G(z) = [Oyx(n-m), Bu]T and G(2)G(2)¥ = D,
and let K, = B;1[©, ~ ©, ®,]. Next, since Q in (8) is
an arbitrary positive-definite matrix with Apn.x(Q) < 2,
it can be replaced by |B,| = (BE)%, where (-)2 denotes

the (unique) positive-definite square root. Now, since B,
is symmetric and sign definite it follows from the Schur

decomposition that B, = UDg,UT, where U is orthogo-
nal and Dp, is real diagonal. Hence, |B,|Gn(z)G!(z) =
[Omx (n—m); Im] = BY, where I, = I, for B, > 0 and
Iy = —1I,, for B; < 0. (W]

3. Illustrative Numerical Examples

In this section we present two numerical examples
to demonstrate the utility of the proposed discrete-time
adaptive control framework for adaptive stabilization, dis-
turbance rejection, and command following.

Example 3.1. Consider the linear uncertain system
given by ’

z(k+2) +'a1z(k +1) 4+ aoz(k) = bu(k) + dsin 7k,
2(0) = 2zq, 2(1) = 21, k€N, (32)

where z(k) € R, k € N, u(k) € R, k € N, and ag,ay,b,d €
R are unknown constants. Note that with z1(k) = 2(k)
and z2(k) = z(k + 1), (32) can be written in state space
form (1) with z = [z1, z2|T, f(z) = [z2, —aoz1 — a123]7,
G(z) = [0, BT, J(z) = [0, d|¥, and w(k) = sin7k. Here,
we assume that f(z) is unknown and can be parameterized
as f(z) = [z2, 8;71+0222)T, where 6; and 62 are unknown
constants. Furthermore, we assume that signb is known
and [b| < 2. Next, let Gy(z) = 1, F(z) = z, and K =
% [6n, — 81, 04, — O2],, where 8y, 0, are arbitrary scalars,
so that

fela) = £+ § | 3100 = 01,00 62 | FO0)

0 1
On, O, | ©

Now, with the proper choice of §,, and ,,,, it follows from
Corollary 2.1 that the adaptive feedback controller (30)
guarantees that z(k) —» 0 as k — co. With ; = -1, 60, =
0.25,b =04, d = 10, 8,, = —0.02, 6,,, = 0.3, and initial
conditions z(0) = [—1, 3]T and K(OI) = [0, 0, 0], Figure
3.1 shows that the phase portrait of the controlled and
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Figure 3.1: Phase portrait of controlled and uncontrolled
system
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Figure 3.2: State trajectories and control signal versus
time

uncontrolled system. Note that the adaptive controller
is switched on at k = 30. Figure 3.2 shows the state
trajectories versus time and the control signal versus time.
Finally, Figure 3.3 shows the adaptive gain history versus
time.

Example 3.2. Consider the two-degree of freedom un-
certain nonlinear system given by
Mz(k + 2) + Coz(k + 1) + Ks2(k) = u(k),
2(0) = 200, 2(1) = 210, k € N, (33)

where z(k) € R?, u(k) € R?, k € N, M;,Cs, K, € R?*2,
Here we assume that M; = MY > 0 and oa0(M;!) < 2.
Let 74(k) be a desired command signal and define the error
state &(k) £ z(k) — ra(k) so that the error dynamics are
given by
Mé(k +2) + Csé(k + 1) + K é(k)
= u(k) — Mgra(k + 2) — Csra(k + 1) — Kgra(k),

1 T
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Figure 3.3: Adaptive gain history versus time

8(0) = &9, &(1) = &1, k € N. (34) -

Note that with e;(k) = é(k) and ex(k) = é(k + 1),

~ (34) can be written in state space form (21) with e =

[6’11" e"{]Tr ft(k7 e) = [837 _(Ms*leel + MS_ICSBQ)T]T?
G(k,e) = [02xa, M7YT, Ji(k,e) = [Ogx2, DT]T, where
Dy = [-Is, —M[1Cs, —M; 1K), and wy(k) = [r](k +
2), rT(k + 1), r1(k)]T. Note that M;! is symmetric and
positive definite but unknown. Next, let Ky = M[0,, +

MKy, ©n, + M71C,], where ©,, € R?*?, 9, € R?x2
are arbitrary matrices, so that

o= [ &8 o e

Now, with the proper choice of ©,, and ©,,, it follows

from Corollary 2.1 and Remark 2.2 that the a&aptive feed-

lv)gcl;lcontroller (30) guarantees that e(k) — 0 as t — oo.
it

31 2 2 2 1
Ms=l:1 2]7 CS—[I 1}1 Ks_|:12:I)
r4(k) = [sin0.5k, 0.5]T, ©p, = O, = 02, and initial con-
ditions z(0) = [3, —4, =2, 1]T and K(0) = 02410, Figure
3.4 shows the actual positions and the reference signals

versus time and the control signals versus time. Note that
the adaptive controller is switched on at k = 40.

4. Conclusion

A discrete-time direct adaptive nonlinear control frame-
work for adaptive stabilization, disturbance rejection, and -
command following of multivariable nonlinear uncertain
systems with exogenous bounded disturbances was devel-
oped. Using Lyapunov methods the proposed framework
was shown to guarantee partial asymptotic stability of the
closed-loop system; that is, asymptotic stability with re-
spect to part of the closed-loop system states associated

~with the plant. Furthermore, in the case where the non-

linear system is represented in normal form with input-
to-state stable zero dynamics, the nonlinear adaptive con-
trollers were constructed without knowledge of the system
dynamics. Finally, two illustrative numerical examples
were presented to show the utility of the proposed adap-
tive stabilization and tracking scheme.
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Figure 3.4: Positions and control signals versus time
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