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Abstract 

A direct adaptive nonlinear control framework for 
discrete-time multivariable nonlinear uncertain systems 
with exogenous bounded disturbances is developed. The 
adaptive nonlinear controller addresses adaptive stabiliza- 
tion, disturbance rejection, and adaptive tracking. The 
proposed framework is Lyapunov-based and guarantees 
partial asymptotic stability of the closed-loop system; 
that is, asymptotic stability with res ect to part of 
the closed-loo system states associatecfwith the plant. 
Finally, two ilfhrative numerical examples are provided 
to demonstrate the efficacy of the proposed approach. 

1. Introduction 
In a recent series of papers [l, 21, a direct a d a p  

tive control framework for adaptive stabilization, distur- 
bance rejection, and command following of multivariable 
continuous-time nonlinear uncertain systems with exoge- 
nous bounded amplitude disturbances was developed. In 
this paper we develop analogous results for discrete-time 
nonlinear uncertain systems. Specifically, a Lyapunov- 
based direct adaptive control framework is developed that 
guarantees partial asymptotic stability of the closed-loop 
system; that is, asymptotic stability with respect to art 
of the closed-loop system states associated with the pgnt. 
Furthermore, in the case where the nonlinear system is 
represented in normal form with input-testate stable zero 
dynamics, the nonlinear discrete-time adaptive controller 
is constructed without requiring knowledge of the system 
dynamics or system disturbance. 

In the paper we use the following standard notation. Let 
R denote the set of real numbers, let R" denote the set of 
n x 1 real column vectors, let ( )T denote transpose, let ( 
denote the Moore-Penrose generalized inverse, and let 
denote the set of nonnegative integers. Furthermore, we 
write X,i,(M) (resp., Amax(M)) for the minimum (resp., 
maximum) eigenvalue of the Hermitian matrix M ,  tr(.) for 
the trace operator, and In(.) for the natural log operator. 

2. Discrete-Time Adaptive Control for Nonlinear 
Systems with Exogenous Disturbances 

In this section we consider the problem of character- 
izing adaptive feedback control laws for nonlinear uncer- 
tain discrete-time systems with exogenous disturbances. 
Specifically, consider the following controlled nonlinear 
uncertain discrete-time system 6 given by 

3 

z ( k  + 1) = f ( 4 k ) )  + G(z(k))u(k) + J ( z ( k ) ) w ( k ) ,  
~ ( 0 )  = 20, k E N ,  (1) 

where z ( k )  E R", k E N ,  is the state vector, u ( k )  E Rm, 
k E N ,  is the control input, w(k)  E Rd, k E N ,  is a 
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known bounded disturbance vector such that ((w(k)112 _< 6, 
k E N ,  f : R" --f R" and satisfies f ( 0 )  = 0, G : R" -+ 
R"X" , and J : R" + Rnxd is a disturbance weighting 
matrix function with unknown entries. The control input 
U ( . )  in (1) is restricted to the class of admissible controls 
consisting of measurable functions such that u ( k )  E Et", 

Theorem 2.1. Consider the nonlinear system 6 given 
by (1). Assume there exists a matrix K g  E R""" and 
funcfions G : B" + RmXm and F : R" + R" such that 
det G(z) # 0, z E R", 

k E N .  

F T ( z ) F ( z )  _<cS.2zTz, z E W", (2) 

where 7 > 0, and the zero solution z ( k )  0 to 

z ( k  + 1) = f(.(k)) + G(.(k))G'(.(k))K,F(s(lc)) 
4 f c ( z ( k ) ) ,  4 0 )  = 20, k E N ,  (3) 

is globally asymptotically stable. Furthermore,- assume 
there exists a matrix Q E Etmxd such that G(z)G(z)@ = 
J ( x ) .  In addition, assume there exist functions V, : W" + 
R, Plc : R" + e : R" -+ Rt, and a nonnegative- 
definite matrix function P2c : R" + W""" such that 
Pzc(z) 5 yI,, z E R", y > 0, Vs(.) is continuous, positive 
definite, V , ( O )  = 0, and, for all z E R" and ii E R", 

V , ( f ( z )  + G(z)G(z)fi) 
= K(f(z)) + P1c(z)ii + iiTP2c(z)ii, (4) 

0 1 K(fc(z)) - K(z) + CT(z)e(zc) + EPlc(z)PE(z), 
(5) 

V , k )  L P T Z ,  (6) 

where E E R and p E R are positive constants. Finally, 
let Z ( k )  4 [ F T ( z ( k ) ) ,  wT(k)lT and Q E RmXm be posi- 
tive definite such that X,,,(Q) < 2. Then the adaptive 
feedback control law 

u(k)  = G ( z ( k ) ) K ( k ) S ( k ) ,  (7) 

where K ( k )  E Rmx(s+d) ,  k E N ,  with update law 

~ ( k  + 1) = ~ ( k )  - ~ G : - l ( z ( k ) ) ~ t ( ~ ( k ) )  

.[z(k + 1) - fC(.(k))l5t(k), (8) 

guarantees that the solution ( z ( k ) ,  K ( k ) )  (0, [K,, - @ I )  
of the closed-loop system given by (l), (7), and (8) is Lya- 
punov stable and e ( z ( k ) )  + 0 as t + 00. If, in addition, 
eT(x)ek) > 0, z # 0, then z ( k )  -+ 0 as k -+ 00 for all 
X o E R .  
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Proof. First, define k ( k )  4 K ( k )  - kg and G(k)  4 
l ? ( k ) i ( k ) ,  where kg f [Kg ,  -Q]. Note that with u ( k ) ,  
k E N, given by (7) it follows from (1) that 

or, equivalently, using (3) and the fact that G(z)G(z)Q = 

J ( x )  1 

Furthermore, note that by subtracting Kg from the both 
sides of (8) and using (10) it follows that 

K ( k  + 1) = K ( k )  - ~ G - l ( ~ ( k ) ) ~ t ( s ( k ) )  
- [G (z ( k )  )G (z ( k ) ) K  ( k )  f ( k ) ]  it ( k )  

= K ( k )  - Q K ( k ) % ( k ) i t ( k ) .  (11) 

To show Lyapunov stability of the closed-loop system (10) 
and (1 1), consider the Lyapunov function candidate 

V ( z , K )  = ln(l+V,(z))+atr(K-kg)TQ(K-kg), (12) 

where a is a positive constant. Note that V ( 0 7 k g )  = 0 
and, since K(.) and Q are positive definite, V ( x , K )  > 0 
for all (z, K )  # (0, kg). Furthermore, V ( z ,  K )  is radially 
unbounded. Now, letting x ( k ) ,  k E N, denote the solu- 
tion to (10) and using (4 , (5), and (ll), it follows that 

jectories is given by 
the Lyapunov difference a 1 ong the closed-loop system tra- 

whert in (13) we used lna  - lnb = In and ln(1 + c)  5 c 
for a , b  > 0 and c 2 0, respectively. Now, adding and 

~ 
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subtracting &a7 k E N ,  to and from (13) and 
collecting terms yields 

where 

R(z,w) A a(1 + K(z)) (2I  - Q )  - - + y iTi. (15) 
(:E 1 

Noting that 21 - Q > 0, since A,,,(&) < 2, and taking 

z + y  1 - m a x { 6 , 5 } ,  ' A,i,(2I - Q )  

it follows that 

Hence the Lyapunov difference given by (13) yields 

L 0, (17) 

which proves that the solution ( ~ ( k ) ,  K ( k ) )  = (0,  kg) to 
(8) and (10) is Lyapunov stable. Furthermore, it follows 
from (the discrete-time version of) Theorem 4.4 of [3] that 
l ( x ( k ) )  +. 0 as t 4 ca. Finally, if lT ( z ) l ( x )  > 0, # 0 ,  

0 then z ( k )  ---f 0 as t -+ 00 for all zo E R". 

Remark 2.1. Theorem 2.1 is also valid for time- 
varying uncertain systems Gt of the form 

where f : R x R" -+ R" and satisfies f(k,O) = 0, k E N ,  
G : R x R" -+ R""", and J : R x R" -+ Rnxd .  In partic- 
ular, replacing F : W" -+ R" by F : R x R" + R",where 
F(k,O) = 0, k E N, and requiring F T ( k , x ) F ( k , x )  < - 



~ ~ 2 ~ 2 ,  k E N ,  z E R", in place of (2), G : R" -+ R m x m  
by G : R x R" --+ RmXm, and requiring G(k, z ) G ( k ,  x)Q = 
J ( k ,  z) in place of G(x)G(z Q = J x), it follows by using 
identical arguments as in t h \  e roo of Theorem 2.1 that 
the adaptive feedback control Ew 

u ( k )  = G ( k , z ( k ) ) K ( k ) 5 ( k ) ,  (19) 

where Z ( k )  [ F T ( k , z ( k ) ) ,  wT(k)lT, with update law 

~ ( k  + 1) = ~ ( k )  - ~ G : - l ( k , ~ ( k ) ) ~ + ( k , ~ ( k ) )  

w + 1) - fC(.(~)>l.+(k), (20) 

where fc(z) = f ( k , z )  + G(k,z)G:(k,x)K,F(k,z), guar- 
antees that the solution ( z ( k ) , K ( k ) )  s~ (0, [K,, -*]) of 
the closed-loop system (18)-(20) is Lyapunov stable and 
z ( k )  -+ 0 as t -+ 00 for all 20 E R". 

Remark 2.2. It follows from Remark 2.1 that Theo- 
rem 2.1 can also be used to construct adaptive tracking 
controllers for nonlinear uncertain systems. Specifically, 
let Td(k)  E R", t 2 0,  denote a command input and define 
the error state e ( k )  e z ( k )  - Td(k).  In this case, the error 
dynamics are given by 

e(k + 1) = f t ( k ,  e ( k ) )  + G(k ,  e ( k ) ) u ( k )  
+ J t ( k , e ( k ) ) w t ( k ) ,  e(0)  = eo, k EN,  (21) 

where f t ( k , e ( k ) )  = f ( e ( k ) + r d ( k ) ) - n ( k ) ,  with f ( T d ( k ) )  = 
n ( k ) ,  and J t ( k , e ( k ) ) w t ( k )  = n ( k )  - Td(k + 1) + 
J ( k ,  e (k ) )w(k ) .  Now, the adaptive tracking control law 
(19) and (20), with z ( k )  replaced by e(lc), guarantees that 
e ( k )  -+ 0 as t -+ 00 for all eo E R". 

It is important to note that the adaptive control law (7) 
and ( 8 )  does not require explicit knowledge of the gain 
matrix K,, the disturbance matching matrix Q ,  the dis- 
turbance weighting matrix function J I ) ,  and the positive 
constants y, 7, E and p; even though 4 heorem 2.1 requires 
the existence of K,, F ( z ) ,  G(z), and 9 such that the zero 
solution z ( k )  3 0 to (3) is globally asymptotically sta- 
ble and the matching condition G(z)G(x)Q = J ( z )  holds. 
Furthermore, if (1) is in normal form with asymptotically 
stable internal dynamics [4] and if fT(z)f(z) 5 T2zTz, 
x E U%", > 0, then we can always construct a function 
F : R" -+ R" such that the zero solution z(k) 3 0 to 
(3) is globally asymptotically stable and (2) holds wzthout 
requiring knowledge of the system dynamics. (For sim- 
plicity of exposition in the ensuing discussion we assume 
that J ( z )  = D, where D E Rnxd  is a disturbance weight- 
ing matrix with unknown entries.) To see this assume 
that the nonlinear uncertain system is generated by the 
difference model 

m 

zs(k + 7%) = fua(z(k)) + C ~ s ( * , j ) ( ~ ( k ) ) ~ j ( k )  
j=1 

d 

+ fi(a,l)wl(k), ~ ( 0 )  = 20, E N ,  
i = l , . . . , m ,  (22) 

where 7% denotes the time delay (or relative degree) with 
respect to the output za, f,,(z(k)) = f , , , (~ l (k) , . . . , z l (k+ 

k 1  

71  - l),...,z,(k),...,z,(k + Tm - I)) ,  G's(z,j)(z(k)) = 

G's(a,+(zi(k), . . . , z i ( k + ~ i - l ) ,  . . . , z , (k) ,  . .. , ~ m ( k + ~ , -  
l)), D(i,l)  E R, i = 1, . - a ,  m, I = 1, ... , d, and wl(k) E R, 
k E N ,  1 = 1,. . . , d. Here, we assume that the square 
matrix function Gs(z )  composed of the entries G s ( i , j ) ( t ) ,  
i , j  = l , . . . , m ,  is such that detGs(z) # 0, t ER', where 
i: = TI + ... + T,. Furthermore, since (22) is in a form 
where it does not possess internal dynamics, it follows that 
T = n. 

Next, define q(k) 2 [ z i ( k ) ,  . . . , z2(k + T~ - 2)IT, i = 

1 , .  . . , m, x,+i ( k )  
and z ( k )  ii [ zT(k ) , . . . , z~+ l (k ) ]T ,  so that (22) can be 
described by (1) with 

[ zi ( k  + Ti - I), * . * , zm(k-f-7, - 

J ( z )  = D =  [ O( n - y ) x d  1 ,  
(24) 

where 

A0 E R("-")X" is a known matrix of zeros and ones cap- 
turing the multivariable controllable canonical form r e p  
resentation 151, fu : R" -+ R" is an unknown function 
and satisfies f:(z)fu(z) 5 ytzTz, z E R", where yu > 0, 
Gs : R" -+ RmXm, and B E Rmxd.  Here, we assume that 
fu(z) is unknown and is parameterized as fU(x) = Qfn(x), 
where fn : R" -+ Rq and satisfies f,'(z)fn(z) 2 y:zTz, 
2 E W", 'yn > 0, and 8 E RmXq is a matrix of uncertain 
const ant parameters . 

Next to a pl Theorem 2.1 to the uncertain system 
(1)  with f(z[ J(z), and D given by (23) and (24), let 
Kg E E t m X " ,  where s = q + T ,  be given by 

Kg = [ e n  - 8, a n ] ,  (25) 

where 8, E RmXq and an E RmX' are known matrices, 
and let 

where fn : R" -+ R' and satisfies fz(x)fn(z) 5 +;xT?, 
x E W", +,, > 0,' is an arbitrary function. In this case, it 
follows that, with G(z) = G;'(z), 

f c b )  = f(z) + G(z)G:(z)K,F(z) 

Note that, with G(x)  = G;'(z), Q in Theorem 2.1 can 
be taken as Q = B so that G(z)G(z)* = J ( z )  = D is 
satisfied, and (2) is satisfied with T2 2 7; + +:. 

Now, since 8, E W m x q  and a n  E Etmx' are arbitrary 
constant matrices and fn : R" -+ RT is an arbitrary func- 
tion we can always construct K, and F ( z )  without knowl- 
edge of f(x) such that the zero solution z(t)  = 0 to (3) 
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can be made globally asymptotically stable. In particu- 
lar, choosing enfn(z) + @,fn(x) = az, where A E RmX", 
it follows that (27) has the form fc(z) = A,z,  where 

A, = [A:,aT is in multivariable controllable canon- 
ical form. Hence, in the case where G(z)G(x) = B is a 
constant matrix, by choosing a such that A, is asymp 
totically stable it follows that for sufficiently small E there 
exists a positive-definite matrix P satisfying the following 
Riccati-type inequality 

I T  

0 2 ATPA, - P + R + 4€A:PBBTPAC, (28)  

where R is positive definite. In this case, with Lya- 
punov function K ( x )  = xTPz, (4)-(6) are satisfied with 
P l c ( x )  = 2xTA:PB, Pzc(x) = BTPB, and p 5 Amin(P), 
and hence the adaptive feedback controller (7) with up- 
date law ( 8 )  guarantees global asymptotic stability of the 
nonlinear uncertain discrete-time dynamical system (1) 
where f(z), G(z), and J ( z )  are given by (23) and (24). 
As mentioned above, it is important to note that it is not 
necessary to utilize a feedback linearizing function F ( x )  
to produce a linear fc(z). However, when the system is in 
normal form, a feedback linearizing function F ( x )  assures 
the existence of K(z) that satisfies the conditions ( 4 )  and 
( 5 ) .  In particular, choosing 8, = 'P, = 0, it follows that 

and hence the update law (8) can be simplified as 

~ ( k  + 1) = ~ ( k )  - ~ G - l ( . ( k ) ) ~ + ( ~ ( k ) ) ~ ( k  + i) i+(k).  
(29) 

Finally, note that Theorem 2.1 is not restricted to systems 
with sector-bounded nonlinearities so long as the re ressor 
function F ( x )  satisfies (2) and we can construct aanown 
function fc(x) such that the zero solution x ( k )  0 to (3) 
is globally asymptotically stable. 

Next, we consider the case where f(z) and G(x)  are 
uncertain. Specifically, we assume that G,(z) is un- 
known and is parameterized as G,(z) = BuGn(z), where 
G, : R" + RmXm is known and satisfies detG,(x) # 
0, x E W", and B, E RmXm, with detB, # 0 and 
am,(B,) < 2, is an unknown symmetric sign definite 
matrix but the sign definiteness of B, is known; that 
is, B, > 0 or B, < 0. For the statement of the next 
result define Bo 4 [Omx(n-m), Z,,,] for B, > 0, and 
Bo 3 [omx(n-m), -Im] for B, < 0. 

Corollary 2.1. Consider the nonlinear system 6 given 
by (1) with f(x), G(z), and J(x) given by (23) and (24), 
and G,(x) = BuGn(rc), where B, is an unknown sym- 
metric matrix and the sign definiteness of B, is known. 
Assume there exists a matrix K g  E RmX" and a function 
F : R" + R" such that the zero solution z ( k )  0 to 
(3) is globally asymptotically stable and (2) holds. Fur- 
thermore, assume there exist functions V, : W" -+ R, 
Plc : R" + R l x m ,  : W" ---f Rt, and a nonnegative- 
definite matrix function P26 : R" + WmXm such that 
P26(x) 5 yZ,,,, x E W", y > 0 ,  K(.) is continuous, positive 
definite, K(0) = 0, and, for all x E R" and ii E R", (4)- 
(6) hold. Finally, let i ( k )  [FT(z(k)), wT(Ic)lT. Then 

T 

T 

the adaptive feedback control law 

U ( k )  = G, (E( Ic) ) K  ( k ) i  ( k )  , (30) 

where K ( k )  E Wmx(s+d), k E N ,  and i(k) 
wT(k)lT, with update law 

[FT(x(k)), 

K ( k  + 1) = K ( k )  - B z [ ~ ( k  + 1) - fc(x(k))]i'(k), (31) 

guarantees that the solution ( z ( k ) ,  K(lc)) (0,  [ K g ,  -@I), 
where * E R m x d ,  of the closed-loop system given by ( l ) ,  

Lyapunov stable and x ( k )  -+ 0 as k + 00 

Proof. The result is a direct consequence of Theo- 
rem 2.1. First, let G(z) = G i l ( z )  and * = BLIB so 
that G(z)G(x) = [Omx(,,-,,,), BUIT and G(x)G(z)@ = D, 
and let K g  = - 8, a,]. Next, since Q in (8) is 
an arbitrary positive-definite matrix with A,,(Q) < 2,  
it can be replaced by lBul = (Eli)+, where (.)+ denotes 
the (unique) positive-definite square root. Now, since B, 
is symmetric and sign definite it follows from the Schur 
decomposition that B, = UDB,U~,  where U is orthogo- 
nal and DB, is real diagonal. Hence, IBUIGn(z)Gt(x) = 
[OmX("-,,,), Zm] = BOT, where Z,,, = I,,, for B, > 0 and 
Zm = -Im for B, < 0. 0 

3. Illustrative Numerical Examples 
In this section we fresent two numerical examples 

to demonstrate the uti ity of the proposed discrete-time 
adaptive control framework for ada tive stabilization, dis- 
turbance rejection, and command Ellowing. 

Example 3.1. Consider the linear uncertain system 
given by 

z ( k  + 2 )  + a l z ( k  + 1) + aoz(k) = bu(k) + dsin7k, 
~ ( 0 )  = ZO, ~ ( 1 )  = 21,  k E N ,  (32) 

where z ( k )  E R, k E N, u ( k )  E W, k E N, and ao, a l ,  b, d^ E 
R are unknown constants. Note that with z l ( k )  = z ( k )  
and z z ( k )  = z (k  + l), (32) can be written in state space 
form (1) with 3: = [xl, z2IT, f(z) = [ 2 2 ,  -uox1 - a1z2IT, 

G(z) = [0, bIT, J ( z )  = [0, dIT, and w ( k )  = sin7k. Here, 
we assume that f (x) is unknown and can be parameterized 
as f(z) = [ z ~ ,  e 1 ~ 1 + 0 2 x ~ ] ~ ,  where 01 and 62 are unknown 
constants. Furthermore, we assume that sign b is known 
and Ibl < 2 .  Next, let G,(z) = 1, F ( z )  = x, and Kg = 

[e,, - el, Onz - 021 , where Bnl ,  e,, are arbitrary scalars, 
so that 

Now, with the proper choice of e,, and On,, it follows from 
Corollary 2.1 that the adaptive feedback controller (30) 
guarantees that z ( k )  -+ 0 as k -+ 00. With 81 = -1, 82 = 
0.25, b = 0.4,  d = 10, e,, = -0.02, On, = 0.3, and initial 
conditions z(0) = [-1, 3IT and K(0 = [0, 0,  01, Figure 
3.1 shows that the phase portrait o 2 the controlled and 
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Figure 3.1: Phase portrait of controlled and uncontrolled 
system 

I 
0 10 20 30 40 50 60 70 60 

Time lh) 

-5 ' 

I 

1 
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0  

Time (h) 

-5 I 

Figure 3.2: State trajectories and control signal versus 
time 

uncontrolled system. Note that the ada tive controller 
is switched on at k = 30. Figure 3.2 sf~ows the state 
trajectories versus time and the control signal versus time. 
Finally, Figure 3.3 shows the adaptive gain history versus 
time. 

Example 3.2. Consider the two-degree of freedom un- 
certain nonlinear system given by 

M,Z(k + 2) + C,z(k + 1) + K,Z(k) = U@), 

~ ( 0 )  = ZOO, ~ ( 1 )  = ZIO, k E N ,  (33) 

where ~ ( k )  E R2, ~ ( k )  E R2, k E N ,  M,,C,,K, E R Z x 2 .  
Here we assume that M, = MT > 0 and umaX(M;') < 2. 
Let ?'d ( k )  be a desired command signal and define the error 
state E(k) A ~ ( k )  - rd (k )  so that the error dynamics are 
given by 

M,E(k + 2) + C,E(k + 1) + K,C(k) 
= U(k) - MsTd(k + 2) - Csrd(k + 1) - Ksrd(k), 

0 J 

0 10 20 30 40 50 M 70 80 
Time (U 

0 10 20 30 40 50 M 70 80 

-' 
0 1 o m m m ~ ~ 7 o m  

Time (h) 

Figure 3.3: Adaptive gain history versus time 

E(0) = eo, E(1)  = el,  k E N.  (34) 

Note that with e l ( k )  = E(k) and eZ(k) = E(k + l), 
(34) can be written in state space form (21) with e = 

[e?, e:]T, ft(k e )  = [e:, -(M;'K,el + M;'Cse2)T]T, 
G(k ,e )  = [0zx2, Mc1IT, Jt(lc,e) = [ O G ~ ~ ,  @IT, where 
Dt = [ -12, -M;'C,, -ML1KS], and wt(k) = [ r z (k  + 
2), ~ : ( k  + l) ,  rz (k) lT .  Note that M;' is symmetric and 
positive definite but unknown. Next, let Kg = M,[Q,, + 
M;'K,, Q,, + M;'C,], where 0,, E Et2", Q,, E R Z x 2  
are arbitrary matrices, so that 

Now, with the proper choice of 0, and 8, , it follows 
from Corollary 2.1 and Remark 2.2 that the adaptive feed- 
back controller (30) guarantees that e ( k )  + 0 as t + 00. 
With 

r d ( k )  = [sin0.5k, 0.5IT, Q,, = Q,, = 02, and initial con- 
ditions o(0) = [3, -4, -2, 1IT and K(0)  = 0 ~ ~ 1 0 ,  Figure 
3.4 shows the actual positions and the reference signals 
versus time and the control signals versus time. Note that 
the adaptive controller is switched on at k = 40. 

4. Conclusion 
A discrete-time direct adaptive nonlinear control frame- 

work for ada tive stabilization, disturbance rejection, and ' 
command foEowing of multivariable nonlinear uncertain 
systems with exogenous bounded disturbances was devel- 
oped. Using Lyapunov methods the proposed framework 
was shown to guarantee partial asymptotic stability of the 
closed-loop system; that is, asymptotic stability with re- 
spect to part of the closed-loop system states associated 
with the plant. Furthermore, in the case where the non- 
linear system is represented in normal form with input- 
to-state stable zero dynamics, the nonlinear ada tive con- 
trollers were constructed without knowledge of t1e system 
dynamics. Finally, two illustrative numerical exam les 
were presented to show the utility of the proposed afap- 
tive stabilization and tracking scheme. 

' 
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Figure 3.4: Positions and control signals versus time 
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